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Statistical Machine Learning

Functional Methods
I y = f (x)

I Learn f () using training data

I y∗ = f (x∗) for a test data instance

Statistical/Probabilistic Methods

I Calculate the conditional probability of the target to be y , given that
the input is x

I Assume that y |x is random variable generated from a probability
distribution

I Learn parameters of the distribution using training data
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What is a Random Variable (X )?

I A variable whose value depends on a random phenomenon
I Mapping random processes to numbers (or values)

I Usually denoted using an upper case letter, X ,Y , . . .

I A random variable has:
I A domain: Set of possible values that X can take (denoted as X )
I A probability measure (f ()) that assigns the probability of X to

belong to a subset of X , i.e., P(X ∈ S |S ∈ X ), with two
requirements:

I 0 ≤ f (S) ≤ 1
I

∑
i f (Si ) = 1, where S1, S2, . . . are mutually disjoint subsets of X

and ∪iSi = X

I An instance of the probability measure is a probability distribution
which assigns probability to every element in X
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Two basic types of random variables

Discrete Random Variable
I X is finite/countably finite

I P(X = x) or P(x) is the probability of X taking value x
I Categorical??

Continuous Random Variable
I X is infinite

I Probability of any one value is 0

I Can only talk about range of values:

P(a < X ≤ b)

I We define the probability density function at any location, p(x) or
f (x)

P(a < X ≤ b) =

∫ b

a

p(x)dx
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Notation, Notation, Notation

I X - random variable (X if multivariate)

I x - a specific value taken by the random variable ((x if multivariate))

I P(X = x) or P(x) is the probability of the event X = x

I p(x) is either the probability mass function (discrete) or
probability density function (continuous) for the random variable
X at x
I Probability mass (or density) at x
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Basic Rules - Quick Review

I For two events A and B:
I P(A ∨ B) = P(A) + P(B)− P(A ∧ B)
I Joint Probability

I P(A,B) = P(A ∧ B) = P(A|B)P(B)
I Also known as the product rule

I Conditional Probability

I P(A|B) = P(A,B)
P(B)

Chandola@UB CSE 474/574 7 / 26



Chain Rule of Probability

I Given D random variables, {X1,X2, . . . ,XD}

P(X1,X2, . . . ,XD) = P(X1)P(X2|X1)P(X3|X1,X2) . . .P(XD |X1,X2, . . . ,XD)
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Marginal Distribution

I Given P(A,B) what is P(A)?
I Sum P(A,B) over all values for B

P(A) =
∑
b

P(A,B) =
∑
b

P(A|B = b)P(B = b)

I Sum rule
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Bayes Rule or Bayes Theorem

I Computing P(X = x |Y = y):

Bayes Theorem

P(X = x |Y = y) =
P(X = x ,Y = y)

P(Y = y)

=
P(X = x)P(Y = y |X = x)∑
x′ P(X = x ′)P(Y = y |X = x ′)
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Example

I Medical Diagnosis

I Random event 1: A test is positive or negative (X )

I Random event 2: A person has cancer (Y ) – yes or no

I What we know:

1. Test has accuracy of 80%
2. Number of times the test is positive when the person has cancer

P(X = 1|Y = 1) = 0.8

3. Prior probability of having cancer is 0.4%

P(Y = 1) = 0.004

Question?

If I test positive, does it mean that I have 80% rate of cancer?
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Base Rate Fallacy

I Ignored the prior information

I What we need is:
P(Y = 1|X = 1) =?

I More information:
I False positive (alarm) rate for the test
I P(X = 1|Y = 0) = 0.1

P(Y = 1|X = 1) =
P(X = 1|Y = 1)P(Y = 1)

P(X = 1|Y = 1)P(Y = 1) + P(X = 1|Y = 0)P(Y = 0)

Chandola@UB CSE 474/574 12 / 26



Classification Using Bayes Rule

I Given input example x, find the true class

P(Y = c |X = x)

I Y is the random variable denoting the true class

I Assuming the class-conditional probability is known

P(X = x|Y = c)

I Applying Bayes Rule

P(Y = c |X = x) =
P(Y = c)P(X = x|Y = c)∑
c P(Y = c ′))P(X = x|Y = c ′)

Chandola@UB CSE 474/574 13 / 26



Independence

I One random variable does not depend on another

I A ⊥ B ⇐⇒ P(A,B) = P(A)P(B)

I Joint written as a product of marginals

I Conditional Independence

A ⊥ B|C ⇐⇒ P(A,B|C ) = P(A|C )P(B|C )
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Expectation of Functions of Random Variable

I Let g(X ) be a function of X

I If X is discrete:

E[g(X )] ,
∑
x∈X

g(x)P(X = x)

I If X is continuous:

E[g(X )] ,
∫
X
g(x)p(x)dx

Properties
I E[c] = c , c - constant

I If X ≤ Y , then E[X ] ≤ E[Y ]

I E[X + Y ] = E[X ] + E[Y ]

I E[aX ] = aE[X ]

I var [X ] = E[(X − µ)2] =
E[X 2]− µ2

I Cov [X ,Y ] = E[XY ]−E[X ]E[Y ]

I Jensen’s inequality: If ϕ(X ) is
convex,

ϕ(E[X ]) ≤ E[ϕ(X )]

Chandola@UB CSE 474/574 15 / 26



Expectation

I Expected value of a random variable

E[X ]

I What is most likely to happen in terms of X?

I For discrete variables

E[X ] ,
∑
x∈X

xP(X = x)

I For continuous variables

E[X ] ,
∫
X
xp(x)dx

I Mean of X (µ)
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Variance

I Spread of the distribution

var [X ] , E((X − µ)2)

= E(X 2)− µ2
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What is a Probability Distribution?

Discrete
I Binomial,Bernoulli

I Multinomial, Multinoulli

I Poisson

I Empirical

Continuous
I Gaussian (Normal)

I Degenerate pdf

I Laplace

I Gamma

I Beta

I Pareto
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Binomial Distribution

I X = Number of heads observed in n coin tosses

I Parameters: n, θ

I X ∼ Bin(n, θ)

I Probability mass function (pmf)

Bin(k |n, θ) ,

(
n

k

)
θk(1− θ)n−k

Bernoulli Distribution
I Binomial distribution with n = 1

I Only one parameter (θ)
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Multinomial Distribution

I Simulates a K sided die

I Random variable x = (x1, x2, . . . , xK )

I Parameters: n, θ

I θ ← <K

I θj - probability that j th side shows up

Mu(x|n,θ) ,

(
n

x1, x2, . . . , xK

) K∏
j=1

θ
xj
j

Multinoulli Distribution
I Multinomial distribution with n = 1

I x is a vector of 0s and 1s with only one bit set to 1

I Only one parameter (θ)
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Gaussian (Normal) Distribution

N (x |µ, σ2) ,
1√

2πσ2
e−

1
2σ2 (x−µ)2

I Parameters:

1. µ = E[X ]
2. σ2 = var [X ] = E[(X − µ)2]

I X ∼ N (µ, σ2)⇔ p(X = x) = N (µ, σ2)

I X ∼ N (0, 1) ⇐ X is a standard normal
random variable

I Cumulative distribution function:

Φ(x ;µ, σ2) ,
∫ x

−∞
N (z |µ, σ2)dz
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Joint Probability Distributions

I Multiple related random variables

I p(x1, x2, . . . , xD) for D > 1 variables (X1,X2, . . . ,XD)

I Discrete random variables?

I Continuous random variables?

I What do we measure?

Covariance
I How does X vary with respect to Y

I For linear relationship:

cov [X ,Y ] , E[(X − E[X ])(Y − E[Y ])] = E[XY ]− E[X ]E[Y ]
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Covariance and Correlation

I x is a d-dimensional random vector

cov [X] , E[(X− E[X])(X− E[X])>]

=


var [X1] cov [X1,X2] · · · cov [X1,Xd ]

cov [X2,X1] var [X2] · · · cov [X2,Xd ]
...

...
. . .

...
cov [Xd ,X1] cov [Xd ,X2] · · · var [Xd ]


I Covariances can be between 0 and ∞
I Normalized covariance ⇒ Correlation

Chandola@UB CSE 474/574 23 / 26



Correlation

I Pearson Correlation Coefficient

corr [X ,Y ] ,
cov [X ,Y ]√
var [X ]var [Y ]

I What is corr [X ,X ]?

I −1 ≤ corr [X ,Y ] ≤ 1

I When is corr [X ,Y ] = 1?

I Y = aX + b
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Multivariate Gaussian Distribution

I Most widely used joint probability distribution

N (X|µ,Σ) ,
1

(2π)D/2|Σ|1/2
exp

[
−1

2
(x− µ)>Σ−1(x− µ)

]
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