Introduction to Machine Learning

Statistical Machine Learning

Varun Chandola

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu

Ъ

University at Buffalo Department of Computer Science and Engineering School of Engeening and Applied Sciences

Chandola@UB

E 474/574 1

4 🗆 🕨

1 / 26

Statistical Machine Learning - Introduction

Introduction to Probability

Random Variables

Bayes Rule

Different Types of Distributions

Handling Multivariate Distributions

Functional Methods

$$\blacktriangleright$$
 $y = f(\mathbf{x})$

- Learn f() using training data
- $y^* = f(\mathbf{x}^*)$ for a test data instance

Functional Methods

•
$$y = f(\mathbf{x})$$

- Learn f() using training data
- $y^* = f(\mathbf{x}^*)$ for a test data instance

Statistical/Probabilistic Methods

- Calculate the *conditional probability* of the target to be y, given that the input is x
- Assume that y |x is random variable generated from a probability distribution
- Learn parameters of the distribution using training data

- A variable whose value depends on a random phenomenon
 - Mapping random processes to numbers (or values)
- Usually denoted using an upper case letter, X, Y, \ldots
- A random variable has:
 - A domain: Set of possible values that X can take (denoted as \mathcal{X})
 - A probability measure (f()) that assigns the probability of X to belong to a subset of X, i.e., P(X ∈ S|S ∈ X), with two requirements:
 - $0 \leq f(S) \leq 1$
 - ▶ $\sum_i f(S_i) = 1$, where $S_1, S_2, ...$ are mutually disjoint subsets of X and $\cup_i S_i = X$
- An instance of the probability measure is a probability distribution which assigns probability to every element in X

Two basic types of random variables

Discrete Random Variable

- X is finite/countably finite
- P(X = x) or P(x) is the probability of X taking value x
 - Categorical??

Continuous Random Variable

- \blacktriangleright \mathcal{X} is infinite
- Probability of any one value is 0
- Can only talk about range of values:

$$P(a < X \leq b)$$

We define the probability density function at any location, p(x) or f(x)

$$P(a < X \le b) = \int_a^b p(x) dx$$

Chandola@UB

CSE 474/574 5 / 26

э

- X random variable (X if multivariate)
- x a specific value taken by the random variable ((x if multivariate))
- P(X = x) or P(x) is the probability of the event X = x
- p(x) is either the probability mass function (discrete) or probability density function (continuous) for the random variable X at x
 - Probability mass (or density) at x

For two events A and B:

- $\blacktriangleright P(A \lor B) = P(A) + P(B) P(A \land B)$
- Joint Probability
 - $\blacktriangleright P(A,B) = P(A \land B) = P(A|B)P(B)$
 - Also known as the product rule
- Conditional Probability

$$\blacktriangleright P(A|B) = \frac{P(A,B)}{P(B)}$$

		1 5 7	1 4 4	= *,	
CSE 474/574	7	/ 26			

• Given *D* random variables, $\{X_1, X_2, \ldots, X_D\}$

$$P(X_1, X_2, \dots, X_D) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2) \dots P(X_D|X_1, X_2, \dots, X_D)$$

< □ >	< ⊡ ► < ≣	▶ ▲ 문 ▶	E
CSE 474/574	8 / 26		

Given
$$P(A, B)$$
 what is $P(A)$?
Sum $P(A, B)$ over all values for B
 $P(A) = \sum_{b} P(A, B) = \sum_{b} P(A|B = b)P(B = b)$

Sum rule

• Computing
$$P(X = x | Y = y)$$
:

Bayes Theorem

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

=
$$\frac{P(X = x)P(Y = y | X = x)}{\sum_{x'} P(X = x')P(Y = y | X = x')}$$

Example

- Medical Diagnosis
- Random event 1: A test is positive or negative (X)
- ▶ Random event 2: A person has cancer (Y) yes or no
- What we know:
 - 1. Test has accuracy of 80%
 - 2. Number of times the test is positive when the person has cancer

$$P(X = 1 | Y = 1) = 0.8$$

3. Prior probability of having cancer is 0.4%

$$P(Y = 1) = 0.004$$

Question?

If I test positive, does it mean that I have 80% rate of cancer?

Chandola@UB

- Ignored the prior information
- What we need is:

$$P(Y=1|X=1)=?$$

- More information:
 - False positive (alarm) rate for the test
 - P(X = 1 | Y = 0) = 0.1

$$P(Y = 1 | X = 1) = \frac{P(X = 1 | Y = 1)P(Y = 1)}{P(X = 1 | Y = 1)P(Y = 1) + P(X = 1 | Y = 0)P(Y = 0)}$$

< □ ▶		. 🕨 🔍 톤 🕨	三 つく
CSE 474/574	12 / 26		

Given input example x, find the true class

$$P(Y = c | \mathbf{X} = \mathbf{x})$$

Y is the random variable denoting the true class

Assuming the class-conditional probability is known

$$P(\mathbf{X} = \mathbf{x} | Y = c)$$

Applying Bayes Rule

$$P(Y = c | \mathbf{X} = \mathbf{x}) = \frac{P(Y = c)P(\mathbf{X} = \mathbf{x} | Y = c)}{\sum_{c} P(Y = c')P(\mathbf{X} = \mathbf{x} | Y = c')}$$

One random variable does not depend on another

$$\blacktriangleright A \perp B \Longleftrightarrow P(A,B) = P(A)P(B)$$

Joint written as a product of marginals

Conditional Independence

$$A \perp B | C \iff P(A, B | C) = P(A | C)P(B | C)$$

- Let g(X) be a function of X
- ► If X is discrete:

$$\mathbb{E}[g(X)] \triangleq \sum_{x \in \mathcal{X}} g(x) P(X = x)$$

If X is continuous:

$$\mathbb{E}[g(X)] \triangleq \int_{\mathcal{X}} g(x) p(x) dx$$

Properties

- ▶ $\mathbb{E}[c] = c$, c constant
- If $X \leq Y$, then $\mathbb{E}[X] \leq \mathbb{E}[Y]$
- $\blacktriangleright \mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$
- $\blacktriangleright \mathbb{E}[aX] = a\mathbb{E}[X]$
- $var[X] = \mathbb{E}[(X \mu)^2] = \mathbb{E}[X^2] \mu^2$
- $\blacktriangleright \quad Cov[X,Y] = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$
- Jensen's inequality: If φ(X) is convex,

$$\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)]$$

Expected value of a random variable

 $\mathbb{E}[X]$

- What is most likely to happen in terms of X?
- For discrete variables

$$\mathbb{E}[X] \triangleq \sum_{x \in \mathcal{X}} x P(X = x)$$

For continuous variables

$$\mathbb{E}[X] \triangleq \int_{\mathcal{X}} x p(x) dx$$

• Mean of $X(\mu)$

Spread of the distribution

$$var[X] \triangleq \mathbb{E}((X - \mu)^2)$$

= $\mathbb{E}(X^2) - \mu^2$

< □ >	 	- < ≣ ▶	<u>।</u> ରାଜ ମ
CSE 474/574	17 / 26		

Discrete

- ▶ Binomial, Bernoulli
- Multinomial, Multinoulli
- Poisson
- Empirical

Continuous

- Gaussian (Normal)
- Degenerate pdf
- Laplace
- ▶ Gamma
- Beta
- Pareto

Binomial Distribution

- X = Number of heads observed in *n* coin tosses
- ▶ Parameters: n, θ
- \blacktriangleright X ~ Bin(n, θ)
- Probability mass function (pmf)

$$Bin(k|n,\theta) \triangleq \binom{n}{k} \theta^k (1-\theta)^{n-k}$$

Bernoulli Distribution

- ▶ Binomial distribution with n = 1
- Only one parameter (θ)

< □ >	< ⊡ > < ≣ >	<≣>	E nac
CSE 474/574	19 / 26		

Multinomial Distribution

- Simulates a K sided die
- Random variable $\mathbf{x} = (x_1, x_2, \dots, x_K)$
- ▶ Parameters: n, θ
- $\blacktriangleright \ \theta \leftarrow \Re^{K}$
- θ_j probability that j^{th} side shows up

$$Mu(\mathbf{x}|n, \boldsymbol{\theta}) \triangleq \binom{n}{x_1, x_2, \dots, x_K} \prod_{j=1}^K \theta_j^{x_j}$$

Multinoulli Distribution

- Multinomial distribution with n = 1
- **x** is a vector of 0s and 1s with only one bit set to 1
- Only one parameter (θ)

Chandola@UB

Gaussian (Normal) Distribution

$$\mathcal{N}(x|\mu,\sigma^2) \triangleq \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

Parameters:

1.
$$\mu = \mathbb{E}[X]$$

2. $\sigma^2 = var[X] = \mathbb{E}[(X - \mu)^2]$

$$\blacktriangleright X \sim \mathcal{N}(\mu, \sigma^2) \Leftrightarrow p(X = x) = \mathcal{N}(\mu, \sigma^2)$$

- $X \sim \mathcal{N}(0,1) \Leftarrow X$ is a standard normal random variable
- Cumulative distribution function:

$$\Phi(x;\mu,\sigma^2) \triangleq \int_{-\infty}^{x} \mathcal{N}(z|\mu,\sigma^2) dz$$

Joint Probability Distributions

- Multiple related random variables
- $p(x_1, x_2, ..., x_D)$ for D > 1 variables $(X_1, X_2, ..., X_D)$
- Discrete random variables?
- Continuous random variables?
- What do we measure?

Covariance

- How does X vary with respect to Y
- For linear relationship:

$$cov[X, Y] \triangleq \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

► **x** is a *d*-dimensional random vector $cov[\mathbf{X}] \triangleq \mathbb{E}[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])^{\top}]$ $= \begin{pmatrix} var[X_1] & cov[X_1, X_2] & \cdots & cov[X_1, X_d] \\ cov[X_2, X_1] & var[X_2] & \cdots & cov[X_2, X_d] \\ \vdots & \vdots & \ddots & \vdots \\ cov[X_d, X_1] & cov[X_d, X_2] & \cdots & var[X_d] \end{pmatrix}$

- \blacktriangleright Covariances can be between 0 and ∞
- ► Normalized covariance ⇒ Correlation

► Pearson Correlation Coefficient $corr[X, Y] \triangleq \frac{cov[X, Y]}{\sqrt{var[X]var[Y]}}$

- ▶ What is corr[X, X]?
- ▶ $-1 \leq corr[X, Y] \leq 1$
- When is corr[X, Y] = 1?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

► Pearson Correlation Coefficient $corr[X, Y] \triangleq \frac{cov[X, Y]}{\sqrt{var[X]var[Y]}}$

What is corr[X, X]?
 −1 ≤ corr[X, Y] ≤ 1
 When is corr[X, Y] = 1?
 Y = aX + b

Most widely used joint probability distribution

$$\mathcal{N}(\mathbf{X}|\boldsymbol{\mu}, \mathbf{\Sigma}) \triangleq \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}|^{1/2}} exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○
 CSE 474/574 25 / 26

References

####