Introduction to Machine Learning

Statistical Machine Learning

Varun Chandola
Computer Science \& Engineering State University of New York at Buffalo
Buffalo, NY, USA
chandola@buffalo.edu

Outline

Statistical Machine Learning - Introduction

Introduction to Probability

Random Variables

Bayes Rule

Different Types of Distributions

Handling Multivariate Distributions

Statistical Machine Learning

Functional Methods

- $y=f(\mathbf{x})$
- Learn $f()$ using training data
- $y^{*}=f\left(\mathbf{x}^{*}\right)$ for a test data instance

Statistical Machine Learning

Functional Methods

- $y=f(\mathbf{x})$
- Learn $f()$ using training data
- $y^{*}=f\left(\mathbf{x}^{*}\right)$ for a test data instance

Statistical/Probabilistic Methods

- Calculate the conditional probability of the target to be y, given that the input is \mathbf{x}
- Assume that $y \mid \mathbf{x}$ is random variable generated from a probability distribution
- Learn parameters of the distribution using training data

What is a Random Variable (X) ?

- A variable whose value depends on a random phenomenon
- Mapping random processes to numbers (or values)
- Usually denoted using an upper case letter, X, Y, \ldots
- A random variable has:
- A domain: Set of possible values that X can take (denoted as \mathcal{X})
- A probability measure $(f())$ that assigns the probability of X to belong to a subset of \mathcal{X}, i.e., $P(X \in S \mid S \in \mathcal{X})$, with two requirements:
- $0 \leq f(S) \leq 1$
- $\sum_{i} f\left(S_{i}\right)=1$, where S_{1}, S_{2}, \ldots are mutually disjoint subsets of \mathcal{X} and $\cup_{i} S_{i}=\mathcal{X}$
- An instance of the probability measure is a probability distribution which assigns probability to every element in \mathcal{X}

Two basic types of random variables

Discrete Random Variable

- \mathcal{X} is finite/countably finite
- $P(X=x)$ or $P(x)$ is the probability of X taking value x
- Categorical??

Continuous Random Variable

- \mathcal{X} is infinite
- Probability of any one value is 0
- Can only talk about range of values:

$$
P(a<X \leq b)
$$

- We define the probability density function at any location, $p(x)$ or $f(x)$

$$
P(a<X \leq b)=\int_{a}^{b} p(x) d x
$$

Notation, Notation, Notation

- X - random variable (\mathbf{X} if multivariate)
- x - a specific value taken by the random variable ($(\mathbf{x}$ if multivariate $)$)
- $P(X=x)$ or $P(x)$ is the probability of the event $X=x$
- $p(x)$ is either the probability mass function (discrete) or probability density function (continuous) for the random variable X at x
- Probability mass (or density) at x

Basic Rules - Quick Review

- For two events A and B :
- $P(A \vee B)=P(A)+P(B)-P(A \wedge B)$
- Joint Probability
- $P(A, B)=P(A \wedge B)=P(A \mid B) P(B)$
- Also known as the product rule
- Conditional Probability
- $P(A \mid B)=\frac{P(A, B)}{P(B)}$

Chain Rule of Probability

- Given D random variables, $\left\{X_{1}, X_{2}, \ldots, X_{D}\right\}$

$$
P\left(X_{1}, X_{2}, \ldots, X_{D}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots P\left(X_{D} \mid X_{1}, X_{2}, \ldots, X_{D}\right)
$$

Marginal Distribution

- Given $P(A, B)$ what is $P(A)$?
- Sum $P(A, B)$ over all values for B

$$
P(A)=\sum_{b} P(A, B)=\sum_{b} P(A \mid B=b) P(B=b)
$$

- Sum rule

Bayes Rule or Bayes Theorem

- Computing $P(X=x \mid Y=y)$:

Bayes Theorem

$$
\begin{aligned}
P(X=x \mid Y=y) & =\frac{P(X=x, Y=y)}{P(Y=y)} \\
& =\frac{P(X=x) P(Y=y \mid X=x)}{\sum_{x^{\prime}} P\left(X=x^{\prime}\right) P\left(Y=y \mid X=x^{\prime}\right)}
\end{aligned}
$$

Example

- Medical Diagnosis
- Random event 1: A test is positive or negative (X)
- Random event 2: A person has cancer (Y) - yes or no
- What we know:

1. Test has accuracy of 80%
2. Number of times the test is positive when the person has cancer

$$
P(X=1 \mid Y=1)=0.8
$$

3. Prior probability of having cancer is 0.4%

$$
P(Y=1)=0.004
$$

Question?

If I test positive, does it mean that I have 80% rate of cancer?

Base Rate Fallacy

- Ignored the prior information
- What we need is:

$$
P(Y=1 \mid X=1)=?
$$

- More information:
- False positive (alarm) rate for the test
- $P(X=1 \mid Y=0)=0.1$

$$
P(Y=1 \mid X=1)=\frac{P(X=1 \mid Y=1) P(Y=1)}{P(X=1 \mid Y=1) P(Y=1)+P(X=1 \mid Y=0) P(Y=0)}
$$

Classification Using Bayes Rule

- Given input example \mathbf{x}, find the true class

$$
P(Y=c \mid \mathbf{X}=\mathbf{x})
$$

- Y is the random variable denoting the true class
- Assuming the class-conditional probability is known

$$
P(\mathbf{X}=\mathbf{x} \mid Y=c)
$$

- Applying Bayes Rule

$$
P(Y=c \mid \mathbf{X}=\mathbf{x})=\frac{P(Y=c) P(\mathbf{X}=\mathbf{x} \mid Y=c)}{\left.\sum_{c} P\left(Y=c^{\prime}\right)\right) P\left(\mathbf{X}=\mathbf{x} \mid Y=c^{\prime}\right)}
$$

Independence

- One random variable does not depend on another
- $A \perp B \Longleftrightarrow P(A, B)=P(A) P(B)$
- Joint written as a product of marginals
- Conditional Independence

$$
A \perp B \mid C \Longleftrightarrow P(A, B \mid C)=P(A \mid C) P(B \mid C)
$$

Expectation of Functions of Random Variable

Properties

- $\mathbb{E}[c]=c, c$ - constant
- If $X \leq Y$, then $\mathbb{E}[X] \leq \mathbb{E}[Y]$
- $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$
- $\mathbb{E}[a X]=a \mathbb{E}[X]$
- $\operatorname{var}[X]=\mathbb{E}\left[(X-\mu)^{2}\right]=$ $\mathbb{E}\left[X^{2}\right]-\mu^{2}$
- $\operatorname{Cov}[X, Y]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$
- Jensen's inequality: If $\varphi(X)$ is convex,

$$
\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)]
$$

Expectation

- Expected value of a random variable

$$
\mathbb{E}[X]
$$

- What is most likely to happen in terms of X ?
- For discrete variables

$$
\mathbb{E}[X] \triangleq \sum_{x \in \mathcal{X}} x P(X=x)
$$

- For continuous variables

$$
\mathbb{E}[X] \triangleq \int_{\mathcal{X}} x p(x) d x
$$

- Mean of $X(\mu)$

Variance

- Spread of the distribution

$$
\begin{aligned}
\operatorname{var}[X] & \triangleq \mathbb{E}\left((X-\mu)^{2}\right) \\
& =\mathbb{E}\left(X^{2}\right)-\mu^{2}
\end{aligned}
$$

What is a Probability Distribution?

Continuous

Discrete

- Binomial, Bernoulli
- Multinomial, Multinoulli
- Poisson
- Empirical
- Gaussian (Normal)
- Degenerate pdf
- Laplace
- Gamma
- Beta
- Pareto

Binomial Distribution

- $X=$ Number of heads observed in n coin tosses
- Parameters: n, θ
- $X \sim \operatorname{Bin}(n, \theta)$
- Probability mass function ($p m f$)

$$
\operatorname{Bin}(k \mid n, \theta) \triangleq\binom{n}{k} \theta^{k}(1-\theta)^{n-k}
$$

Bernoulli Distribution

- Binomial distribution with $n=1$
- Only one parameter ($\boldsymbol{\theta}$)

Multinomial Distribution

- Simulates a K sided die
- Random variable $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{K}\right)$
- Parameters: n, θ
- $\theta \leftarrow \Re^{K}$
- θ_{j} - probability that $j^{\text {th }}$ side shows up

$$
M u(\mathbf{x} \mid n, \boldsymbol{\theta}) \triangleq\binom{n}{x_{1}, x_{2}, \ldots, x_{K}} \prod_{j=1}^{K} \theta_{j}^{x_{j}}
$$

Multinoulli Distribution

- Multinomial distribution with $n=1$
- x is a vector of 0 s and 1 s with only one bit set to 1
- Only one parameter (θ)

Gaussian (Normal) Distribution

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \triangleq \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

- Parameters:

1. $\mu=\mathbb{E}[X]$
2. $\sigma^{2}=\operatorname{var}[X]=\mathbb{E}\left[(X-\mu)^{2}\right]$

- $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \Leftrightarrow p(X=x)=\mathcal{N}\left(\mu, \sigma^{2}\right)$
- $X \sim \mathcal{N}(0,1) \Leftarrow X$ is a standard normal random variable
- Cumulative distribution function:

$$
\Phi\left(x ; \mu, \sigma^{2}\right) \triangleq \int_{-\infty}^{x} \mathcal{N}\left(z \mid \mu, \sigma^{2}\right) d z
$$

Joint Probability Distributions

- Multiple related random variables
- $p\left(x_{1}, x_{2}, \ldots, x_{D}\right)$ for $D>1$ variables $\left(X_{1}, X_{2}, \ldots, X_{D}\right)$
- Discrete random variables?
- Continuous random variables?
- What do we measure?

Covariance

- How does X vary with respect to Y
- For linear relationship:

$$
\operatorname{cov}[X, Y] \triangleq \mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

Covariance and Correlation

- x is a d-dimensional random vector

$$
\begin{gathered}
\operatorname{cov}[\mathbf{X}] \triangleq \mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{\top}\right] \\
=\left(\begin{array}{cccc}
\operatorname{var}\left[X_{1}\right] & \operatorname{cov}\left[X_{1}, X_{2}\right] & \cdots & \operatorname{cov}\left[X_{1}, X_{d}\right] \\
\operatorname{cov}\left[X_{2}, X_{1}\right] & \operatorname{var}\left[X_{2}\right] & \cdots & \operatorname{cov}\left[X_{2}, X_{d}\right] \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{cov}\left[X_{d}, X_{1}\right] & \operatorname{cov}\left[X_{d}, X_{2}\right] & \cdots & \operatorname{var}\left[X_{d}\right]
\end{array}\right)
\end{gathered}
$$

- Covariances can be between 0 and ∞
- Normalized covariance \Rightarrow Correlation

Correlation

- Pearson Correlation Coefficient

$$
\operatorname{corr}[X, Y] \triangleq \frac{\operatorname{cov}[X, Y]}{\sqrt{\operatorname{var}[X] \operatorname{var}[Y]}}
$$

- What is $\operatorname{corr}[X, X]$?
- $-1 \leq \operatorname{corr}[X, Y] \leq 1$
- When is $\operatorname{corr}[X, Y]=1$?

Correlation

- Pearson Correlation Coefficient

$$
\operatorname{corr}[X, Y] \triangleq \frac{\operatorname{cov}[X, Y]}{\sqrt{\operatorname{var}[X] \operatorname{var}[Y]}}
$$

- What is $\operatorname{corr}[X, X]$?
- $-1 \leq \operatorname{corr}[X, Y] \leq 1$
- When is $\operatorname{corr}[X, Y]=1$?
- $Y=a X+b$

Multivariate Gaussian Distribution

- Most widely used joint probability distribution

$$
\mathcal{N}(\mathbf{X} \mid \mu, \boldsymbol{\Sigma}) \triangleq \frac{1}{(2 \pi)^{D / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\mu)^{\top} \boldsymbol{\Sigma}^{-\mathbf{1}}(\mathbf{x}-\mu)\right]
$$

References

