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Linear Regression

I There is one scalar target variable y (instead of hidden)

I There is one vector input variable x

I Inductive bias:
y = w>x

Linear Regression Learning Task

Learn w given training examples, 〈X, y〉.
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Probabilistic Interpretation

I y is assumed to be normally distributed

y ∼ N (w>x, σ2)

I or, equivalently:
y = w>x + ε

where ε ∼ N (0, σ2)

I y is a linear combination of the input variables

I Given w and σ2, one can find the probability distribution of y for a
given x
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Learning Parameters - MLE Approach

I Find w and σ2 that maximize the likelihood of training data

ŵMLE = (X>X)−1X>y

σ̂2
MLE =

1

N
(y − Xw)>(y − Xw)
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Putting a Prior on w

I “Penalize” large values of w

I A zero-mean Gaussian prior

p(w) = N (w|0, τ 2I )

I What is posterior of w

p(w|D) ∝
∏
i

N (yi |w>xi , σ
2)p(w)

I Posterior is also Gaussian
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Parameter Estimation for Bayesian Regression

I Prior for w
w ∼ N (w|0, τ 2ID)

I Posterior for w

p(w|y,X) =
p(y|X,w)p(w)

p(y|X)

= N (w̄ = (X>X +
σ2

τ 2
ID)−1X>y, σ2(X>X +

σ2

τ 2
ID)−1)

I Posterior distribution for w is also Gaussian

I What will be MAP estimate for w?
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Prediction with Bayesian Regression

I For a new x∗, predict y∗

I Point estimate of y∗

y∗ = ŵ>MLEx∗

I Treating y as a Gaussian random variable

p(y∗|x∗) = N (ŵ>MLEx∗, σ̂2
MLE )

p(y∗|x∗) = N (ŵ>MAPx∗, σ̂2
MAP)
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Full Bayesian Treatment

I Treating y and w as random variables

p(y∗|x∗) =

∫
p(y∗|x∗,w)p(w|X, y)dw

I This is also Gaussian!
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Impact of outliers on regression

I Linear regression training gets impacted by the presence of outliers

I The square term in the exponent of the Gaussian pdf is the culprit
I Equivalent to the square term in the loss

I How to handle this (Robust Regression)?

I Probabilistic:
I Use a different distribution instead of Gaussian for p(y |x)
I Robust regression uses Laplace distribution

p(y |x) ∼ Laplace(w>x, b)

I Geometric:
I Least absolute deviations instead of least squares

J(w) =
N∑
i=1

|yi − w>x|
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Logistic Regression

I y |x is a Bernoulli distribution with parameter θ = sigmoid(w>x)

I When a new input x∗ arrives, we toss a coin which has
sigmoid(w>x∗) as the probability of heads

I If outcome is heads, the predicted class is 1 else 0

I Learns a linear boundary

Learning Task for Logistic Regression

Given training examples 〈xi , yi 〉Di=1, learn w
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Learning Parameters

I MLE Approach

I Assume that y ∈ {0, 1}
I What is the likelihood for a bernoulli sample?

I If yi = 1, p(yi ) = θi = 1
1+exp(−w>xi )

I If yi = 0, p(yi ) = 1− θi = 1
1+exp(w>xi )

I In general, p(yi ) = θyii (1− θi )1−yi

Log-likelihood

LL(w) =
N∑
i=1

yi log θi + (1− yi ) log (1− θi )

I No closed form solution for maximizing log-likelihood
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Using Gradient Descent for Learning Weights

I Compute gradient of LL with respect to w

I A convex function of w with a unique global maximum

d

dw
LL(w) =

N∑
i=1

(yi − θi )xi

I Update rule:

wk+1 = wk + η
d

dwk
LL(wk)

0 2 4 6 8 10

0

5

10

−0.5

0

Chandola@UB CSE 474/574 13 / 19



Using Newton’s Method

I Setting η is sometimes tricky

I Too large – incorrect results

I Too small – slow convergence

I Another way to speed up convergence:

Newton’s Method

wk+1 = wk + ηH−1
k

d

dwk
LL(wk)

Chandola@UB CSE 474/574 14 / 19



What is the Hessian?

I Hessian or H is the second order derivative of the objective function

I Newton’s method belong to the family of second order
optimization algorithms

I For logistic regression, the Hessian is:

H = −
∑
i

θi (1− θi )xix
>
i
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Regularization with Logistic Regression

I Overfitting is an issue, especially with large number of features

I Add a Gaussian prior ∼ N (0, τ 2)

I Easy to incorporate in the gradient descent based approach

LL′(w) = LL(w)− 1

2
λw>w

d

dw
LL′(w) =

d

dw
LL(w)− λw

H ′ = H − λI

where I is the identity matrix.

Chandola@UB CSE 474/574 16 / 19



Handling Multiple Classes

I p(y |x) ∼ Multinoulli(θ)

I Multinoulli parameter vector θ is defined as:

θj =
exp(w>j x)∑C
k=1 exp(w>k x)

I Multiclass logistic regression has C weight vectors to learn
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Bayesian Logistic Regression

I How to get the posterior for w?

I Not easy - Why?

Laplace Approximation
I We do not know what the true posterior distribution for w is.

I Is there a close-enough (approximate) Gaussian distribution?
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