Introduction to Machine Learning

Bayesian Regression

Varun Chandola

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu

University at Buffalo Department of Computer Science and Engineering School of Engering and Applied Sciences

Chandola@UB

E 474/574 1

4 T N 4 A N

Outline

Linear Regression

Problem Formulation Learning Parameters

Bayesian Linear Regression

Bayesian Regression

Estimating Bayesian Regression Parameters Prediction with Bayesian Regression

Handling Outliers in Regression

Probabilistic Interpretation of Logistic Regression

Logistic Regression - Training

Using Gradient Descent for Learning Weights Using Newton's Method Regularization with Logistic Regression Handling Multiple Classes Bayesian Logistic Regression

C	har	-de	d a	ര	ID
~	паі	iuc	ла	e	50

- There is one scalar target variable y (instead of hidden)
- ▶ There is one vector **input** variable *x*
- Inductive bias:

$$y = \mathbf{w}^\top \mathbf{x}$$

Linear Regression Learning Task

Learn **w** given training examples, $\langle \mathbf{X}, \mathbf{y} \rangle$.

y is assumed to be normally distributed

$$y \sim \mathcal{N}(\mathbf{w}^{ op}\mathbf{x}, \sigma^2)$$

or, equivalently:

$$y = \mathbf{w}^{\top} \mathbf{x} + \epsilon$$

where $\epsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2)$

y is a linear combination of the input variables

Given w and σ², one can find the probability distribution of y for a given x

 \blacktriangleright Find w and σ^2 that maximize the likelihood of training data

$$\begin{split} \widehat{\mathbf{w}}_{MLE} &= (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y} \\ \widehat{\sigma}_{MLE}^2 &= \frac{1}{N}(\mathbf{y} - \mathbf{X}\mathbf{w})^{\top}(\mathbf{y} - \mathbf{X}\mathbf{w}) \end{split}$$

< □ >	< 🗇 🕨 <	≡ ►.	< ≣ >	- 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CSE 474/574	5 / 19	,			

"Penalize" large values of w

► A zero-mean Gaussian prior

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|0,\tau^2 I)$$

What is posterior of w

$$p(\mathbf{w}|\mathcal{D}) \propto \prod_{i} \mathcal{N}(y_i | \mathbf{w}^{\top} \mathbf{x}_i, \sigma^2) p(\mathbf{w})$$

Posterior is also Gaussian

Prior for w

$$\mathbf{w} \sim \mathcal{N}(\mathbf{w}|\mathbf{0}, \tau^2 \mathbf{I}_D)$$

Posterior for w

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \frac{p(\mathbf{y}|\mathbf{X}, \mathbf{w})p(\mathbf{w})}{p(\mathbf{y}|\mathbf{X})}$$
$$= \mathcal{N}(\bar{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X} + \frac{\sigma^2}{\tau^2}\mathbf{I}_D)^{-1}\mathbf{X}^{\top}\mathbf{y}, \sigma^2(\mathbf{X}^{\top}\mathbf{X} + \frac{\sigma^2}{\tau^2}\mathbf{I}_D)^{-1})$$

- \blacktriangleright Posterior distribution for ${\bf w}$ is also Gaussian
- ► What will be MAP estimate for w?

- For a new \mathbf{x}^* , predict y^*
- Point estimate of y*

$$y^* = \widehat{\mathbf{w}}_{MLE}^{\top} \mathbf{x}^*$$

Treating y as a Gaussian random variable

$$p(y^*|\mathbf{x}^*) = \mathcal{N}(\widehat{\mathbf{w}}_{MLE}^{\top}\mathbf{x}^*, \widehat{\sigma}_{MLE}^2)$$
$$p(y^*|\mathbf{x}^*) = \mathcal{N}(\widehat{\mathbf{w}}_{MAP}^{\top}\mathbf{x}^*, \widehat{\sigma}_{MAP}^2)$$

Treating y and w as random variables

$$p(y^*|\mathbf{x}^*) = \int p(y^*|\mathbf{x}^*,\mathbf{w}) p(\mathbf{w}|\mathbf{X},\mathbf{y}) d\mathbf{w}$$

► This is also *Gaussian*!

Impact of outliers on regression

- Linear regression training gets impacted by the presence of outliers
- ▶ The square term in the exponent of the Gaussian pdf is the culprit
 - Equivalent to the square term in the loss
- ▶ How to handle this (*Robust Regression*)?
- Probabilistic:
 - Use a different distribution instead of Gaussian for $p(y|\mathbf{x})$
 - Robust regression uses Laplace distribution

$$p(y|\mathbf{x}) \sim Laplace(\mathbf{w}^{\top}\mathbf{x}, b)$$

Geometric:

Least absolute deviations instead of least squares

$$J(\mathbf{w}) = \sum_{i=1}^{N} |y_i - \mathbf{w}^{\top} \mathbf{x}|$$

- ▶ $y|\mathbf{x}$ is a *Bernoulli* distribution with parameter $\theta = sigmoid(\mathbf{w}^{\top}\mathbf{x})$
- When a new input x^{*} arrives, we toss a coin which has sigmoid(w[⊤]x^{*}) as the probability of heads
- If outcome is heads, the predicted class is 1 else 0
- Learns a linear boundary

Learning Task for Logistic Regression

Given training examples $\langle \mathbf{x}_i, y_i \rangle_{i=1}^D$, learn **w**

Learning Parameters

MLE Approach

- Assume that $y \in \{0, 1\}$
- What is the likelihood for a bernoulli sample?

• If
$$y_i = 1$$
, $p(y_i) = \theta_i = \frac{1}{1 + exp(-\mathbf{w}^\top \mathbf{x}_i)}$

• If
$$y_i = 0$$
, $p(y_i) = 1 - \theta_i = \frac{1}{1 + exp(\mathbf{w}^\top \mathbf{x}_i)}$

• In general,
$$p(y_i) = \theta_i^{y_i} (1 - \theta_i)^{1-y_i}$$

Log-likelihood

$$LL(\mathbf{w}) = \sum_{i=1}^{N} y_i \log \theta_i + (1-y_i) \log (1-\theta_i)$$

No closed form solution for maximizing log-likelihood

Chandola@UB

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○
CSE 474/574 12 / 19

- Compute gradient of LL with respect to w
- A convex function of w with a unique global maximum

$$rac{d}{d\mathbf{w}}LL(\mathbf{w}) = \sum_{i=1}^{N} (y_i - heta_i)\mathbf{x}_i$$

Update rule:

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \eta \frac{d}{d\mathbf{w}_k} LL(\mathbf{w}_k)$$

- Setting η is sometimes *tricky*
- Too large incorrect results
- Too small slow convergence
- Another way to speed up convergence:

Newton's Method

$$\mathbf{w}_{k+1} = \mathbf{w}_k + \eta \mathbf{H}_k^{-1} \frac{d}{d\mathbf{w}_k} LL(\mathbf{w}_k)$$

< □ >	<⊡> <≣>	- < 注 ▶ -	1	$) \land (\bigcirc)$
CSE 474/574	14 / 19			

- \blacktriangleright Hessian or H is the second order derivative of the objective function
- Newton's method belong to the family of second order optimization algorithms
- ► For logistic regression, the Hessian is:

$$m{H} = -\sum_i heta_i (1- heta_i) m{x}_i m{x}_i^ op$$

< □ >	<⊡> < ≣>	- < ≣ >	<u> </u>	0
CSE 474/574	15 / 19			

- Overfitting is an issue, especially with large number of features
- Add a Gaussian prior $\sim \mathcal{N}(\mathbf{0}, \tau^2)$
- Easy to incorporate in the gradient descent based approach

$$LL'(\mathbf{w}) = LL(\mathbf{w}) - \frac{1}{2}\lambda \mathbf{w}^{\top}\mathbf{w}$$
$$\frac{d}{d\mathbf{w}}LL'(\mathbf{w}) = \frac{d}{d\mathbf{w}}LL(\mathbf{w}) - \lambda \mathbf{w}$$
$$H' = H - \lambda I$$

where *I* is the identity matrix.

< □ ▶		_ < ≣ ▶	≣ ≁) α (°
CSE 474/574	16 / 19		

- $\blacktriangleright p(y|\mathbf{x}) \sim Multinoulli(\boldsymbol{\theta})$
- Multinoulli parameter vector θ is defined as:

$$\theta_j = \frac{e \times p(\mathbf{w}_j^\top \mathbf{x})}{\sum_{k=1}^{C} e \times p(\mathbf{w}_k^\top \mathbf{x})}$$

Multiclass logistic regression has C weight vectors to learn

- How to get the posterior for w?
- Not easy Why?

Laplace Approximation

- We do not know what the true posterior distribution for w is.
- Is there a close-enough (approximate) Gaussian distribution?

References