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Training vs. Generalization Error

I Difference between training error and generalization error

I We can train a model to minimize the training error

I What we really want is a model that can minimize the generalization
error

I But we do not have the unseen data to compute the generalization
error

I What do we do?

1. Focus on the training error and hope that generalization error is
automatically minimized

2. Incorporate some way to hedge (insure) against possible unseen
issues
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Maximum Margin Classifiers

y = w>x + b

I Remember the Perceptron!

I If data is linearly separable
I Perceptron training

guarantees learning the
decision boundary

I There can be other boundaries
I Depends on initial value for

w

I But what is the best
boundary?

w>x = −b

ŵ = w
|w|

− b
|w|

x1

x2

+1
−1
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Linear Hyperplane

I Separates a D-dimensional space into
two half-spaces

I Defined by w ∈ <D

I Orthogonal to the hyperplane
I This w goes through the origin
I How do you check if a point lies

“above” or “below” w?
I What happens for points on w?

w
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Make hyperplane not go through origin

I Add a bias b
I b > 0 - move along w
I b < 0 - move opposite to w

I How to check if point lies above or below w?
I If w>x + b > 0 then x is above
I Else, below
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Line as a Decision Surface

I Decision boundary represented by the
hyperplane w

I For binary classification, w points
towards the positive class

Decision Rule

y = sign(w>x + b)

I w>x + b > 0⇒ y = +1

I w>x + b < 0⇒ y = −1

y

x

w
> x

+
b

=
0

w
> x

+
b
>

0

w
> x

+
b
<

0

b‖w‖

w
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What is Best Hyperplane Separator

I Perceptron can find a hyperplane that
separates the data
I . . . if the data is linearly separable

I But there can be many choices!

I Find the one with best separability
(largest margin)

I Gives better generalization performance

1. Intuitive reason
2. Theoretical foundations

x
x

x
xx x

x x
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What is a Margin?

I The Geometric Margin is the distance between an example and the
decision line

I Denoted by γ

I For a positive point:

γ =
w>x + b

‖w‖
I For a negative point:

γ = −w>x + b

‖w‖
I In general:

γ = y
w>x + b

‖w‖

Functional Interpretation
I Margin positive if prediction is correct; negative if prediction is

incorrect
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Margin for a given line

I Geometric margin of a line w>x + b, with respect to a given data
set is the smallest of the geometric margins over all examples:

γ = arg min
i=1...n

γi

I Consider the line parallel to the decision boundary that passes
through the nearest training example
I Assuming that the nearest example is positive, this line will be called

the positive margin
I A similar line on the other side of the decision boundary is called the

negative margin

I We can rescale the weights, w and bias term b such that the
equations of the positive and negative margins is given by:

w>x + b = +1

,and
w>x + b = −1
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Maximum Margin Principle

x2

x1

w
> x

+
b

=
0

w
> x

+
b

=
1

w
> x

+
b

=
−1

2‖w‖

b‖w‖

w
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Support Vector Machines

I A hyperplane based classifier
defined by w and b

I Like perceptron

I Find hyperplane with maximum
separation margin on the
training data

I Assume that data is linearly
separable (will relax this later)
I Zero training error (loss)

SVM Prediction Rule

y = sign(w>x + b)

SVM Learning
I Input: Training data
{(x1, y1), (x2, y2), . . . , (xN , yN)}

I Objective: Learn w and b that
maximizes the margin
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SVM Learning

I SVM learning task as an optimization problem

I Find w and b that gives zero training error

I Maximizes the margin (= 2
‖w‖ )

I Same as minimizing ‖w‖

Optimization Formulation

minimize
w,b

‖w‖2

2

subject to yi (w
>xi + b) ≥ 1, i = 1, . . . ,N.

I Optimization with N linear inequality constraints
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Solving the Optimization Problem

Optimization Formulation

minimize
w,b

‖w‖2

2

subject to yi (w
>xi + b) ≥ 1, i = 1, . . . ,N.

or

minimize
w,b

‖w‖2

2

subject to 1− [yi (w
>xi + b)] ≤ 0, i = 1, . . . ,N.

I There is an quadratic objective function to minimize with N
inequality constraints

I “Off-the-shelf” packages - quadprog (MATLAB), CVXOPT

I Is that the best way?
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Basic Optimization

minimize
x,y

f (x , y) = x2 + 2y2 − 2

minimize
x,y

f (x , y) = x2 + 2y2 − 2

subject to h(x , y) = x + y − 1 = 0.
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Lagrange Multipliers - A Primer

I Method for solving constrained optimization problems of
differentiable functions

minimize
x,y

f (x , y) = x2 + 2y2 − 2

subject to h(x , y) : x + y − 1 = 0.

I A Lagrange multiplier (β) lets you combine the two equations into
one

minimize
x,y ,β

L(x , y , β) = f (x , y) + βh(x , y)
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Multiple Constraints

minimize
x,y ,z

f (x , y , z) = x2 + 4y2 + 2z2 + 6y + z

subject to h1(x , y , z) : x + z2 − 1 = 0

h2(x , y , z) : x2 + y2 − 1 = 0.

L(x , y , z ,β) = f (x , y , z) +
∑
i

βihi (x , y , z)
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Handling Inequality Constraints

minimize
x,y

f (x , y) = x3 + y2

subject to g(x) : x2 − 1 ≤ 0.

I Inequality constraints are transferred as constraints on the
generalized Lagrangian, using the multiplier, α

I Technically, α is a Kahrun-Kuhn-Tucker (KKT) multiplier
I Lagrangian formulation is a special case of KKT formulation with no

inequality constraints

Generalized Lagrangian

L(w,α,β) = f (w) +
k∑

i=1

αigi (w)

subject to, αi ≥ 0,∀i
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Handling Both Types of Constraints

minimize
w

f (w)

subject to gi (w) ≤ 0 i = 1, . . . , k

and hi (w) = 0 i = 1, . . . , l .

Generalized Lagrangian

L(w,α,β) = f (w) +
k∑

i=1

αigi (w) +
l∑

i=1

βihi (w)

subject to, αi ≥ 0,∀i
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Karush-Kuhn-Tucker (KKT) Conditions

I A set of conditions that are necessary for a solution (w∗) to be
optimal

I The are necessary conditions, but not always sufficient
I In some cases they are sufficient (SVMs being one of them)

I Stationarity:

∇L(w∗) = ∇(w∗) +∇
k∑

i=1

αigi (w
∗) +∇

l∑
i=1

βihi (w
∗) = 0

I Primal feasibility:
gi (w

∗) ≤ 0,∀i
hi (w

∗) = 0,∀i
I Dual feasibility:

αi ≥ 0,∀i
I Complementary slackness

k∑
i=1

αigi (w
∗) = 0
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Lagrange Multipliers for SVM

Optimization Formulation

minimize
w,b

‖w‖2

2

subject to 1− [yi (w
>xi + b)] ≤ 0, i = 1, . . . ,N.

A Toy Example

I x ∈ <2

I Two training points:
x1, y1 = (1, 1),−1

x2, y2 = (2, 2),+1

I Find the best hyperplane w = (w1,w2)
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Optimization problem for a toy example

minimize
w

f (w) =
1

2
‖w‖2

subject to g1(w, b) = 1− y1(w>x1 + b) ≤ 0

g2(w, b) = 1− y2(w>x2 + b) ≤ 0.

I Substituting actual values for x1, y1 and x2, y2.

minimize
w

f (w) =
1

2
‖w‖2

subject to g1(w, b) = 1 + (w>x1 + b) ≤ 0

g2(w, b) = 1− (w>x2 + b) ≤ 0.
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Primal and Dual Formulations

Generalized Lagrangian

L(w,α,β) = f (w) +
k∑

i=1

αigi (w) +
l∑

i=1

βihi (w)

subject to, αi ≥ 0,∀i

Primal Optimization
I Let θP be defined as:

θP(w) = max
α,β:αi≥0

L(w,α,β)

I One can prove that the optimal value for the original constrained
problem is same as:

p∗ = min
w
θP(w) = min

w
max

α,β:αi≥0
L(w,α,β)
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Primal and Dual Formulations (II)

Dual Optimization
I Consider θD , defined as:

θD(α,β) = min
w

L(w,α,β)

I The dual optimization problem can be posed as:

d∗ = max
α,β:αi≥0

θD(α,β) = max
α,β:αi≥0

min
w

L(w,α,β)

d∗ == p∗?
I Note that d∗ ≤ p∗

I “Max min” of a function is always less than or equal to “Min max”

I When will they be equal?
I f (w) is convex
I Constraints are affine
I ∃w, s.t., gi (w) < 0,∀i

I For SVM optimization the equality holds
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Kahrun-Kuhn-Tucker (KKT) Conditions

I First derivative tests to check if a solution for a non-linear
optimization problem is optimal

I For d∗ = p∗ = L(w∗,α∗,β∗):

∂

∂w
L(w∗,α∗,β∗) = 0

∂

∂βi
L(w∗,α∗,β∗) = 0, i = 1, . . . , l

α∗i gi (w
∗) = 0, i = 1, . . . , k

gi (w
∗) ≤ 0, i = 1, . . . , k

α∗i ≥ 0, i = 1, . . . , k
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Back to SVM Optimization

Optimization Formulation

minimize
w,b

‖w‖2

2

subject to yi (w
>xi + b) ≥ 1, i = 1, . . . ,N.

I Introducing Lagrange Multipliers,αi , i = 1, . . . ,N

Rewriting as a (primal) Lagrangian

minimize
w,b,α

LP(w, b,α) =
‖w‖2

2
+

N∑
i=1

αi{1− yi (w
>xi + b)}

subject to αi ≥ 0 i = 1, . . . ,N.
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Solving the Lagrangian

I Set gradient of LP to 0

∂LP
∂w

= 0⇒ w =
N∑
i=1

αiyixi

∂LP
∂b

= 0⇒
N∑
i=1

αiyi = 0

I Substituting in LP to get the dual LD

Dual Lagrangian Formulation

maximize
b,α

LD(α) =
N∑
i=1

αi −
1

2

N∑
m,n=1

αmαnymyn(x>mxn)

subject to
N∑
i=1

αiyi = 0, αi ≥ 0 i = 1, . . . ,N.
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Solving the Dual

I Dual Lagrangian is a quadratic programming problem in αi ’s
I Use “off-the-shelf” solvers

I Having found αi ’s

w =
N∑
i=1

αiyixi

I What will be the bias term b?

b = −
max

n:yi=−1
w>xi + min

n:yi=1
w>xi

2

I We are skipping the proof for this part.
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Investigating Kahrun Kuhn Tucker Conditions

I For the primal and dual formulations

I We can optimize the dual formulation (as shown earlier)

I Solution should satisfy the Karush-Kuhn-Tucker (KKT) Conditions
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The Kahrun-Kuhn-Tucker Conditions

∂

∂w
LP(w, b, α) = w −

N∑
i=1

αiyixi = 0 (1)

∂

∂b
LP(w, b, α) = −

N∑
i=1

αiyi = 0 (2)

1− yi{w>xi + b} ≤ 0 (3)

αi ≥ 0 (4)

αi (1− yi{w>xi + b}) = 0 (5)
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Key Observation from Dual Formulation

Most αi ’s are 0
I KKT condition #5:

αi (1− yi{w>xi + b}) = 0

I If xi not on margin

yi{w>xi + b} > 1

⇒ αi = 0

I αi 6= 0 only for xi on margin

I These are the support vectors

I Only need these for prediction

x2

x1

w
> x

+
b

=
0

w
> x

+
b

=
1

w
> x

+
b

=
−1

2‖w‖

b‖w‖

w
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What if data is not linearly separable?

I Cannot go for zero training error

I Still learn a maximum margin hyperplane

1. Allow some examples to be misclassified
2. Allow some examples to fall inside the margin

I How do you set up the optimization for SVM training
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Cutting Some Slack

y

x

w
>x

+
b

=
0

w
>x

+
b

=
1

w
>x

+
b

=
−1
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Introducing Slack Variables

I Separable Case: To ensure zero training loss, constraint was

yi (w
>xi + b) ≥ 1 ∀i = 1 . . .N

I Non-separable Case: Relax the constraint

yi (w
>xi + b) ≥ 1− ξi ∀i = 1 . . .N

I ξi is called slack variable (ξi ≥ 0)

I For misclassification, ξi > 1

Chandola@UB CSE 474/574 34 / 40



Introducing Slack Variables

I Separable Case: To ensure zero training loss, constraint was

yi (w
>xi + b) ≥ 1 ∀i = 1 . . .N

I Non-separable Case: Relax the constraint

yi (w
>xi + b) ≥ 1− ξi ∀i = 1 . . .N

I ξi is called slack variable (ξi ≥ 0)

I For misclassification, ξi > 1

Chandola@UB CSE 474/574 34 / 40



Relaxing the Constraint

I It is OK to have some misclassified training examples
I Some ξi ’s will be non-zero

I Minimize the number of such examples

I Minimize
N∑
i=1

ξi

I Optimization Problem for Non-Separable Case

minimize
w,b

L(w, b) = ‖w‖2 + C
N∑
i=1

ξi

subject to yi (w
>xi + b) ≥ 1− ξi , ξi ≥ 0 i = 1, . . . ,N.
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Estimating Weights

I Similar optimization procedure as for the separable case (QP for the
dual)

I Weights have the same expression

w =
N∑
i=1

αiyixi

I Support vectors are slightly different

1. Points on the margin (ξi = 0)
2. Inside the margin but on the correct side (0 < ξi < 1)
3. On the wrong side of the hyperplane (ξi ≥ 1)
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What is the role of C?

I C dictates if we focus more on maximizing the margin or reducing
the training error.

I Controls the bias-variance tradeoff
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The Bias-Variance Tradeoff

I C allows the model to be a mule or a sheep or something in between

I Question: What do you want the model to be?
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Concluding Remarks on SVM

I Training time for SVM training is O(N3)

I Many faster but approximate approaches exist
I Approximate QP solvers
I Online training

I SVMs can be extended in different ways

1. Non-linear boundaries (kernel trick)
2. Multi-class classification
3. Probabilistic output
4. Regression (Support Vector Regression)
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