Introduction to Machine Learning

Maximum Margin Methods

Varun Chandola

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu

Ъ

University at Buffalo Department of Computer Science and Engineering School of Engeening and Applied Sciences

Chandola@UB

E 474/574 1

4 -

1 / 40

4 A b

Outline

Training vs. Generalization Error

Maximum Margin Classifiers

Linear Classification via Hyperplanes Concept of Margin

Support Vector Machines

SVM Learning Solving SVM Optimization Problem

Constrained Optimization and Lagrange Multipliers

Toy SVM Example Kahrun-Kuhn-Tucker Conditions Support Vectors Optimization Constraints

The Bias-Variance Tradeoff

- Difference between training error and generalization error
- We can train a model to minimize the training error
- What we really want is a model that can minimize the generalization error
- But we do not have the *unseen* data to compute the generalization error
- What do we do?
 - 1. Focus on the training error and hope that generalization error is automatically minimized
 - 2. Incorporate some way to hedge (insure) against possible unseen issues

Maximum Margin Classifiers

$$y = \mathbf{w}^{\top}\mathbf{x} + b$$

- Remember the Perceptron!
- If data is linearly separable
 - Perceptron training guarantees learning the decision boundary
- There can be other boundaries
 - Depends on initial value for
 w

< ロ > < 同 > < 回 > < 回 >

Maximum Margin Classifiers

$$y = \mathbf{w}^{\top}\mathbf{x} + b$$

- Remember the Perceptron!
- If data is linearly separable
 - Perceptron training guarantees learning the decision boundary
- There can be other boundaries
 - Depends on initial value for w
- But what is the best boundary?

< ロ > < 同 > < 回 > < 回 >

4 / 40

CSE 474/574

- Separates a *D*-dimensional space into two half-spaces
- ▶ Defined by $\mathbf{w} \in \Re^D$
 - Orthogonal to the hyperplane
 - This w goes through the origin
 - How do you check if a point lies "above" or "below" w?
 - What happens for points on w?

- Add a bias b
 - b > 0 move along w
 - b < 0 move opposite to **w**
- How to check if point lies above or below w?
 - If $\mathbf{w}^{\top}\mathbf{x} + b > 0$ then \mathbf{x} is above
 - Else, *below*

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ = ● ● ●

- Decision boundary represented by the hyperplane w
- For binary classification, w points towards the positive class

Decision Rule

$$y = sign(\mathbf{w}^{\top}\mathbf{x} + b)$$

•
$$\mathbf{w}^{\top}\mathbf{x} + b > 0 \Rightarrow y = +1$$

• $\mathbf{w}^{\top}\mathbf{x} + b < 0 \Rightarrow y = -1$

< □ >	< ₫ > < ≣ >	◆夏≯	- 1	900
CSE 474/574	7 / 40			

- Perceptron can find a hyperplane that separates the data
 - ... if the data is linearly separable
- But there can be many choices!
- Find the one with best separability (largest margin)
- Gives better generalization performance
 - 1. Intuitive reason
 - 2. Theoretical foundations

What is a Margin?

- The Geometric Margin is the distance between an example and the decision line
- \blacktriangleright Denoted by γ
- For a positive point:

$$\gamma = \frac{\mathbf{w}^\top \mathbf{x} + b}{\|\mathbf{w}\|}$$

► For a negative point:

$$\gamma = -\frac{\mathbf{w}^{\top}\mathbf{x} + b}{\|\mathbf{w}\|}$$

In general:

$$\gamma = y \frac{\mathbf{w}^\top \mathbf{x} + b}{\|\mathbf{w}\|}$$

Functional Interpretation

Margin positive if prediction is correct; negative if prediction is incorrect

Chandola@UB

CSE 474/574 9 / 40

Margin for a given line

► Geometric margin of a line w^Tx + b, with respect to a given data set is the smallest of the geometric margins over all examples:

$$\gamma = \underset{i=1...n}{\operatorname{arg min}} \gamma_i$$

- Consider the line parallel to the decision boundary that passes through the nearest training example
 - Assuming that the nearest example is positive, this line will be called the *positive margin*
 - A similar line on the other side of the decision boundary is called the negative margin
- We can rescale the weights, w and bias term b such that the equations of the positive and negative margins is given by:

$$\mathbf{w}^{\top}\mathbf{x} + b = +1$$

,and

$$\mathbf{w}^{ op}\mathbf{x} + b = -1$$

Chandola@UB

CSE 474/574 10 / 40

Maximum Margin Principle

< □ ▶	(1日) マイビン	< ≣ ►	- 2	500
CSE 474/574	11 / 40			

- A hyperplane based classifier defined by w and b
- Like perceptron
- Find hyperplane with maximum separation margin on the training data
- Assume that data is linearly separable (will relax this later)
 - Zero training error (loss)

SVM Prediction Rule

$$y = sign(\mathbf{w}^{\top}\mathbf{x} + b)$$

SVM Learning

CSE 474/574

- Input: Training data {(x₁, y₁), (x₂, y₂), ..., (x_N, y_N)}
- Objective: Learn w and b that maximizes the margin

イロト 不得 トイヨト イヨト

12 / 40

э

- SVM learning task as an optimization problem
- Find w and b that gives zero training error
- Maximizes the margin $\left(=\frac{2}{\|\mathbf{w}\|}\right)$
- ► Same as minimizing $\| \mathbf{w} \|$

Optimization Formulation

$$\begin{array}{ll} \underset{\mathbf{w},b}{\text{minimize}} & \frac{\|\mathbf{w}\|^2}{2} \\ \text{subject to} & y_i(\mathbf{w}^\top \mathbf{x}_i + b) \geq 1, \ i = 1, \dots, N. \end{array}$$

Optimization with N linear inequality constraints

Optimization Formulation

$$\begin{split} & \underset{\mathbf{w},b}{\text{minimize}} \quad \frac{\|\mathbf{w}\|^2}{2} \\ & \text{subject to} \quad y_i(\mathbf{w}^\top \mathbf{x}_i + b) \geq 1, \ i = 1, \dots, N. \end{split}$$
 or $& \underset{\mathbf{w},b}{\text{minimize}} \quad \frac{\|\mathbf{w}\|^2}{2} \\ & \text{subject to} \quad 1 - [y_i(\mathbf{w}^\top \mathbf{x}_i + b)] \leq 0, \ i = 1, \dots, N. \end{split}$

- There is an quadratic objective function to minimize with N inequality constraints
- "Off-the-shelf" packages quadprog (MATLAB), CVXOPT
- Is that the best way?

minimize
$$f(x, y) = x^2 + 2y^2 - 2$$

minimize
$$f(x, y) = x^2 + 2y^2 - 2$$

$$\begin{array}{ll} \underset{x,y}{\text{minimize}} & f(x,y) = & x^2 + 2y^2 - 2 \\ \text{subject to} & h(x,y) = & x + y - 1 = 0. \end{array}$$

< □ ▶	- 白子 - 日子	< ₹ ►	- 2	500
CSE 474/574	15 / 40			

 Method for solving constrained optimization problems of differentiable functions

$$\begin{array}{ll} \underset{x,y}{\text{minimize}} & f(x,y) = & x^2 + 2y^2 - 2\\ \text{subject to} & h(x,y) : & x + y - 1 = 0. \end{array}$$

A Lagrange multiplier (β) lets you combine the two equations into one Method for solving constrained optimization problems of differentiable functions

$$\begin{array}{ll} \underset{x,y}{\text{minimize}} & f(x,y) = & x^2 + 2y^2 - 2 \\\\ \text{subject to} & h(x,y) : & x + y - 1 = 0. \end{array}$$

A Lagrange multiplier (β) lets you combine the two equations into one

$$\underset{x,y,\beta}{\text{minimize}} \quad L(x,y,\beta) = \quad f(x,y) + \beta h(x,y)$$

< □ ト < □ ト < 壹 ト < 壹 ト ミ の Q (~ CSE 474/574 16 / 40

$\min_{x,y,z}$	f(x, y, z) =	$x^2 + 4y^2 + 2z^2 + 6y + z$
subject to	$h_1(x, y, z)$:	$x + z^2 - 1 = 0$
	$h_2(x, y, z)$:	$x^2 + y^2 - 1 = 0.$

< □ >	(本部) (本) (王) (王)	< ₹ ►	- 2	$\mathcal{O} \mathcal{Q} \mathcal{O}$
CSE 474/574	17 / 40			

$$\begin{array}{ll} \underset{x,y,z}{\text{minimize}} & f(x,y,z) = & x^2 + 4y^2 + 2z^2 + 6y + z \\ \text{subject to} & h_1(x,y,z) : & x + z^2 - 1 = 0 \\ & h_2(x,y,z) : & x^2 + y^2 - 1 = 0. \end{array}$$

$$L(x, y, z, \beta) = f(x, y, z) + \sum_{i} \beta_{i} h_{i}(x, y, z)$$

Handling Inequality Constraints

$$egin{array}{lll} {
m minimize} & f(x,y)=& x^3+y^2 \ {
m subject to} & g(x):& x^2-1\leq 0. \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○ CSE 474/574 18 / 40

Handling Inequality Constraints

$$egin{array}{ll} {
m minimize} & f(x,y)= & x^3+y^2 \ {
m subject to} & g(x): & x^2-1\leq 0. \end{array}$$

- Inequality constraints are **transferred** as constraints on the generalized Lagrangian, using the multiplier, α
- ▶ Technically, α is a Kahrun-Kuhn-Tucker (KKT) multiplier
 - Lagrangian formulation is a special case of KKT formulation with no inequality constraints

Generalized Lagrangian

$$L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\mathbf{w}) + \sum_{i=1}^{k} \alpha_i g_i(\mathbf{w})$$

subject to, $\alpha_i \geq 0, \forall i$

Chandola@UB

minimize w	$f(\mathbf{w})$	
subject to	$g_i(\mathbf{w}) \leq 0$	$i=1,\ldots,k$
and	$h_i(\mathbf{w}) = 0$	$i=1,\ldots,I.$

Generalized Lagrangian

$$L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\mathbf{w}) + \sum_{i=1}^{k} \alpha_i g_i(\mathbf{w}) + \sum_{i=1}^{l} \beta_i h_i(\mathbf{w})$$

subject to, $\alpha_i \geq 0, \forall i$

< □ >	・日・ ・ヨ・	<≣>	- E	$\mathcal{O} \mathcal{Q} \mathcal{O}$
CSE 474/574	19 / 40			

Karush-Kuhn-Tucker (KKT) Conditions

- A set of conditions that are necessary for a solution (w^{*}) to be optimal
- The are necessary conditions, but not always sufficient
 - In some cases they are sufficient (SVMs being one of them)
- Stationarity:

$$\nabla L(\mathbf{w}^*) = \nabla(\mathbf{w}^*) + \nabla \sum_{i=1}^k \alpha_i g_i(\mathbf{w}^*) + \nabla \sum_{i=1}^l \beta_i h_i(\mathbf{w}^*) = \mathbf{0}$$

Primal feasibility:

$$egin{aligned} g_i(\mathbf{w}^*) &\leq 0, orall i\ h_i(\mathbf{w}^*) &= 0, orall i \end{aligned}$$

Dual feasibility:

$$\alpha_i \geq 0, \forall i$$

Complementary slackness

$$\sum_{i=1}^k \alpha_i g_i(\mathbf{w}^*) = \mathbf{0}$$

Chandola@UB

CSE 474/574 20 / 40

Optimization Formulation

< □ ▶	 < □ < □ < □ 	< ≣ ►	- 2	200
CSE 474/574	21 / 40			

Optimization Formulation

$$\begin{array}{ll} \underset{\mathbf{w},b}{\text{minimize}} & \frac{\|\mathbf{w}\|^2}{2}\\ \text{subject to} & 1 - [y_i(\mathbf{w}^\top \mathbf{x}_i + b)] \leq 0, \ i = 1, \dots, N. \end{array}$$

A Toy Example

▶ $\mathbf{x} \in \Re^2$

Two training points:

$$\mathbf{x}_1, y_1 = (1, 1), -1$$

 $\mathbf{x}_2, y_2 = (2, 2), +1$

Find the best hyperplane $\mathbf{w} = (w_1, w_2)$

< □ ▶		 < Ξ > 	≣ જ) વ ા
CSE 474/574	21 / 40		

Optimization problem for a toy example

$$\begin{array}{lll} \underset{\mathbf{w}}{\mathsf{minimize}} & f(\mathbf{w}) = & \frac{1}{2} \|\mathbf{w}\|^2\\ \text{subject to} & g_1(\mathbf{w},b) = & 1-y_1(\mathbf{w}^\top \mathbf{x}_1+b) \leq 0\\ & g_2(\mathbf{w},b) = & 1-y_2(\mathbf{w}^\top \mathbf{x}_2+b) \leq 0. \end{array}$$

Optimization problem for a toy example

$$\begin{array}{ll} \underset{\mathbf{w}}{\mathsf{minimize}} & f(\mathbf{w}) = & \frac{1}{2} \|\mathbf{w}\|^2\\ \text{subject to} & g_1(\mathbf{w},b) = & 1 - y_1(\mathbf{w}^\top \mathbf{x}_1 + b) \leq 0\\ & g_2(\mathbf{w},b) = & 1 - y_2(\mathbf{w}^\top \mathbf{x}_2 + b) \leq 0. \end{array}$$

Substituting actual values for \mathbf{x}_1, y_1 and \mathbf{x}_2, y_2 .

minimize w	$f(\mathbf{w}) =$	$rac{1}{2}\ oldsymbol{w}\ ^2$
subject to	$g_1(\mathbf{w},b) =$	$1 + (\mathbf{w}^{ op} \mathbf{x}_1 + b) \leq 0$
	$g_2(\mathbf{w}, b) =$	$1 - (\mathbf{w}^{ op} \mathbf{x}_2 + b) \leq 0.$

Generalized Lagrangian

$$L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = f(\mathbf{w}) + \sum_{i=1}^{k} \alpha_i g_i(\mathbf{w}) + \sum_{i=1}^{l} \beta_i h_i(\mathbf{w})$$

subject to, $\alpha_i \geq 0, \forall i$

Primal Optimization

• Let θ_P be defined as:

$$\theta_P(\mathbf{w}) = \max_{\alpha, \beta: \alpha_i \geq 0} L(\mathbf{w}, \alpha, \beta)$$

One can prove that the optimal value for the original constrained problem is same as:

$$p^* = \min_{\mathbf{w}} \theta_P(\mathbf{w}) = \min_{\mathbf{w}} \max_{\alpha, \beta: \alpha_i \ge 0} L(\mathbf{w}, \alpha, \beta)$$

Chandola@UB

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0

CSE 474/574 23 / 40

Primal and Dual Formulations (II)

Dual Optimization

• Consider θ_D , defined as:

$$heta_D(oldsymbol{lpha},oldsymbol{eta}) = \min_{oldsymbol{w}} L(oldsymbol{w},oldsymbol{lpha},oldsymbol{eta})$$

The dual optimization problem can be posed as:

$$d^* = \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_i \geq 0} \theta_D(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \max_{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_i \geq 0} \min_{\mathbf{w}} L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})$$

$d^* == p^*?$

▶ Note that $d^* \leq p^*$

"Max min" of a function is always less than or equal to "Min max"

- When will they be equal?
 - ► f(w) is convex
 - Constraints are affine
 - $\blacktriangleright \exists \mathbf{w}, s.t., g_i(\mathbf{w}) < 0, \forall i$
- For SVM optimization the equality holds

900

 First derivative tests to check if a solution for a non-linear optimization problem is *optimal*

For
$$d^* = p^* = L(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*)$$
:

$$\frac{\partial}{\partial \mathbf{w}} L(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = 0$$

$$\frac{\partial}{\partial \beta_i} L(\mathbf{w}^*, \boldsymbol{\alpha}^*, \boldsymbol{\beta}^*) = 0, \quad i = 1, \dots, l$$

$$\alpha_i^* g_i(\mathbf{w}^*) = 0, \quad i = 1, \dots, k$$

$$g_i(\mathbf{w}^*) \leq 0, \quad i = 1, \dots, k$$

$$\alpha_i^* \geq 0, \quad i = 1, \dots, k$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○
 CSE 474/574 25 / 40

Optimization Formulation

$$\begin{array}{ll} \underset{\mathbf{w},b}{\text{minimize}} & \frac{\|\mathbf{w}\|^2}{2} \\ \text{subject to} & y_i(\mathbf{w}^\top \mathbf{x}_i + b) \geq 1, \ i = 1, \dots, N. \end{array}$$

▶ Introducing Lagrange Multipliers, α_i , i = 1, ..., N

Rewriting as a (primal) Lagrangian

$$\begin{array}{ll} \underset{\mathbf{w},b,\alpha}{\text{minimize}} & L_P(\mathbf{w},b,\alpha) = \frac{\|\mathbf{w}\|^2}{2} + \sum_{i=1}^N \alpha_i \{1 - y_i(\mathbf{w}^\top \mathbf{x}_i + b)\} \\ \text{subject to} & \alpha_i \geq 0 \ i = 1, \dots, N. \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○
 CSE 474/574 26 / 40

Solving the Lagrangian

• Set gradient of L_P to 0

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^N \alpha_i y_i \mathbf{x}_i$$
$$\frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{i=1}^N \alpha_i y_i = 0$$

• Substituting in L_P to get the dual L_D

< □ ▶		이 이 문 🕨	≣ *) ૧ (૧
CSE 474/574	27 / 40		

Solving the Lagrangian

> Set gradient of L_P to 0

$$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \mathbf{w} = \sum_{i=1}^N \alpha_i y_i \mathbf{x}_i$$
$$\frac{\partial L_P}{\partial \mathbf{w}} = 0 \Rightarrow \sum_{i=1}^N \alpha_i y_i = 0$$

$$\frac{\partial L_P}{\partial b} = 0 \Rightarrow \sum_{i=1}^N \alpha_i y_i = 0$$

 \blacktriangleright Substituting in L_P to get the dual L_D

Dual Lagrangian Formulation

$$\begin{array}{ll} \underset{b,\alpha}{\text{maximize}} & L_D(\alpha) = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{m,n=1}^N \alpha_m \alpha_n y_m y_n(\mathbf{x}_m^\top \mathbf{x}_n) \\ \\ \text{subject to} & \sum_{i=1}^N \alpha_i y_i = 0, \alpha_i \geq 0 \ i = 1, \dots, N. \end{array}$$

Chandola@UB

CSE 474/574 27 / 40 ▶ Dual Lagrangian is a *quadratic programming problem* in α_i 's

- Use "off-the-shelf" solvers
- ▶ Having found α_i 's

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

▶ What will be the bias term b?

▶ Dual Lagrangian is a *quadratic programming problem* in α_i 's

- Use "off-the-shelf" solvers
- ▶ Having found α_i 's

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

What will be the bias term b?

$$b = -\frac{\max_{n:y_i=-1} \mathbf{w}^\top \mathbf{x}_i + \min_{n:y_i=1} \mathbf{w}^\top \mathbf{x}_i}{2}$$

We are skipping the proof for this part.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ < ○
 CSE 474/574 28 / 40

- ► For the primal and dual formulations
- We can optimize the dual formulation (as shown earlier)
- Solution should satisfy the Karush-Kuhn-Tucker (KKT) Conditions

The Kahrun-Kuhn-Tucker Conditions

$$\frac{\partial}{\partial \mathbf{w}} L_P(\mathbf{w}, b, \alpha) = \mathbf{w} - \sum_{i=1}^N \alpha_i y_i \mathbf{x}_i = 0$$
(1)

$$\frac{\partial}{\partial b} L_P(\mathbf{w}, b, \alpha) = -\sum_{i=1}^N \alpha_i y_i = 0$$
 (2)

$$1 - y_i \{ \mathbf{w}^\top \mathbf{x}_i + b \} \leq 0 \tag{3}$$

$$\alpha_i \geq 0$$
 (4)

$$\alpha_i(1-y_i\{\mathbf{w}^{\top}\mathbf{x}_i+b\}) = 0$$
(5)

Key Observation from Dual Formulation

Most α_i 's are 0

KKT condition #5:

$$\alpha_i(1-y_i\{\mathbf{w}^{\top}\mathbf{x}_i+b\})=0$$

If x_i not on margin

$$y_i \{ \mathbf{w}^\top \mathbf{x}_i + b \} > 1$$

$$\Rightarrow \qquad \alpha_i = 0$$

- These are the support vectors
- Only need these for prediction

- Cannot go for zero training error
- Still learn a maximum margin hyperplane

- Cannot go for zero training error
- Still learn a maximum margin hyperplane
 - 1. Allow some examples to be misclassified
 - 2. Allow some examples to fall inside the margin

- Cannot go for zero training error
- Still learn a maximum margin hyperplane
 - 1. Allow some examples to be misclassified
 - 2. Allow some examples to fall inside the margin
- How do you set up the optimization for SVM training

Cutting Some Slack

Separable Case: To ensure zero training loss, constraint was

$$y_i(\mathbf{w}^{\top}\mathbf{x}_i+b) \geq 1 \quad \forall i=1\dots N$$

Separable Case: To ensure zero training loss, constraint was

$$y_i(\mathbf{w}^{\top}\mathbf{x}_i+b) \geq 1 \quad \forall i=1\ldots N$$

Non-separable Case: Relax the constraint

$$y_i(\mathbf{w}^{\top}\mathbf{x}_i+b) \geq 1-\xi_i \quad \forall i=1\dots N$$

- ξ_i is called **slack variable** ($\xi_i \ge 0$)
- For misclassification, $\xi_i > 1$

It is OK to have some misclassified training examples

Some ξ_i 's will be non-zero

It is OK to have some misclassified training examples

- Some ξ_i 's will be non-zero
- Minimize the number of such examples

Optimization Problem for Non-Separable Case

$$\begin{array}{ll} \underset{\mathbf{w},b}{\text{minimize}} & L(\mathbf{w},b) = \|\mathbf{w}\|^2 + C \sum_{i=1}^N \xi_i \\ \\ \text{subject to} & y_i(\mathbf{w}^\top \mathbf{x}_i + b) \geq 1 - \xi_i, \xi_i \geq 0 \ i = 1, \dots, N. \end{array}$$

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ CSE 474/574 35 / 40

- Similar optimization procedure as for the separable case (QP for the dual)
- Weights have the same expression

$$\mathbf{w} = \sum_{i=1}^{N} \alpha_i y_i \mathbf{x}_i$$

Support vectors are slightly different

- 1. Points on the margin ($\xi_i = 0$)
- 2. Inside the margin but on the correct side $(0 < \xi_i < 1)$
- 3. On the wrong side of the hyperplane ($\xi_i \ge 1$)

- C dictates if we focus more on maximizing the margin or reducing the training error.
- Controls the bias-variance tradeoff

The Bias-Variance Tradeoff

The Bias-Variance Tradeoff

- C allows the model to be a mule or a sheep or something in between
- Question: What do you want the model to be?

- Training time for SVM training is $O(N^3)$
- Many faster but approximate approaches exist
 - Approximate QP solvers
 - Online training
- SVMs can be extended in different ways
 - 1. Non-linear boundaries (kernel trick)
 - 2. Multi-class classification
 - 3. Probabilistic output
 - 4. Regression (Support Vector Regression)

イロト 不得 トイヨト イヨト 二日

References