Introduction to Machine Learning

Linear Regression

Varun Chandola
Computer Science \& Engineering State University of New York at Buffalo
Buffalo, NY, USA
chandola@buffalo.edu

Outline

Basics

Linear Regression
Problem Formulation
Learning Parameters
Machine Learning as Optimization
Convex Optimization
Matrix Calculus Basics
Evaluating Models
Gradient Descent
Issues with Gradient Descent
Stochastic Gradient Descent

Basics

- Data - scalar (x), vector (\mathbf{x}), Matrix (\mathbf{X})

Scalars

- Numeric $(x \in \mathbb{R})$
- Categorical (e.g., $x \in\{0,1\}$)
- Constants will be denoted as D, M, etc.

Vector

- Length of a vector $\mathbf{x} \in \mathbb{R}^{D}$
- Vector dot product ($\mathbf{x} \cdot \mathbf{y}$)
- Norm of a vector $\left(|\mathbf{x}|,\|\mathbf{x}\|,\|\mathbf{x}\|_{\rho}\right)$

Matrix

- Size of a matrix $\left(\mathbf{X} \in \mathbb{R}^{M \times N}\right)$
- Transpose of a matrix (\mathbf{X}^{\top})
- Matrix product (XY))
- A vector is a special matrix with only one column

$$
\mathbf{x} \cdot \mathbf{y} \equiv \mathbf{x}^{\top} \mathbf{y}
$$

Linear Regression

- There is one scalar target variable y
- There is one vector input variable x
- Inductive bias:

$$
y=\mathbf{w}^{\top} \mathbf{x}
$$

Linear Regression Learning Task

Learn \mathbf{w} given training examples, $\langle\mathbf{X}, \mathbf{y}\rangle$.

Geometric Interpretation

- Fitting a straight line to d dimensional data

$$
\begin{gathered}
y=\mathbf{w}^{\top} \mathbf{x} \\
y=\mathbf{w}^{\top} \mathbf{x}=w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{d} x_{d}
\end{gathered}
$$

- Will pass through origin
- Add intercept

$$
y=w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{d} x_{d}
$$

- Equivalent to adding another column in \mathbf{X} of 1 s .

Incorporating Bias/Intercept

Explicit Bias

$$
\begin{aligned}
\mathbf{x} & \equiv\left\{x_{1}, x_{2}, \ldots, x_{d}\right\} \\
\mathbf{w} & \equiv\left\{w_{1}, w_{2}, \ldots, w_{d}\right\} \\
\mathbf{y} & =w_{0}+\mathbf{w}^{\top} \mathbf{x}
\end{aligned}
$$

Implicit Bias

$$
\begin{aligned}
\mathbf{x} & \equiv\left\{1, x_{1}, x_{2}, \ldots, x_{d}\right\} \\
\mathbf{w} & \equiv\left\{w_{0}, w_{1}, w_{2}, \ldots, w_{d}\right\} \\
\mathbf{y} & =\mathbf{w}^{\top} \mathbf{x}
\end{aligned}
$$

Learning Parameters - Least Squares Approach

- Minimize squared loss

$$
J(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{N}\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{i}\right)^{2}
$$

- or,

$$
J(\mathbf{w})=\frac{1}{2}(\mathbf{y}-\mathbf{X} \mathbf{w})^{\top}(\mathbf{y}-\mathbf{X} \mathbf{w})
$$

- Make prediction ($\mathbf{w}^{\top} \mathbf{x}_{i}$) as close to the target $\left(y_{i}\right)$ as possible
- Least squares estimate

$$
\widehat{\mathbf{w}}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

- We will derive this expression in class.

Machine Learning as Optimization Problem ${ }^{1}$

- Learning is optimization
- Faster optimization methods for faster learning
- Let $\mathbf{w} \in \mathbb{R}^{d}$ and $S \subset \mathbb{R}^{d}$ and $f_{0}(\mathbf{w}), f_{1}(\mathbf{w}), \ldots, f_{m}(\mathbf{w})$ be real-valued functions.
- Standard optimization formulation is:

$$
\begin{array}{ll}
\underset{\mathbf{w}}{\operatorname{minimize}} & f_{0}(\mathbf{w}) \\
\text { subject to } & f_{i}(\mathbf{w}) \leq 0, i=1, \ldots, m
\end{array}
$$

[^0]
Solving Optimization Problems

- Methods for general optimization problems
- Simulated annealing, genetic algorithms
- Exploiting structure in the optimization problem
- Convexity, Lipschitz continuity, smoothness

Convexity

Convex Sets

Convex Functions

Convex Optimization

- Optimality Criterion

$$
\begin{array}{ll}
\underset{\mathbf{w}}{\operatorname{minimize}} & f_{0}(\mathbf{w}) \\
\text { subject to } & f_{i}(\mathbf{w}) \leq 0, i=1, \ldots, m .
\end{array}
$$

where all $f_{i}(\mathbf{w})$ are convex functions.

- \mathbf{w}_{0} is feasible if $\mathbf{w}_{0} \in \operatorname{Dom} f_{0}$ and all constraints are satisfied
- A feasible \mathbf{w}^{*} is optimal if $f_{0}\left(\mathbf{w}^{*}\right) \leq f_{0}(\mathbf{w})$ for all \mathbf{w} satisfying the constraints

Matrix Calculus Basics

$$
\begin{gathered}
\frac{\partial \mathbf{a}^{\top} \mathbf{b}}{\partial \mathbf{a}}=\frac{\partial \mathbf{b}^{\top} \mathbf{a}}{\partial \mathbf{a}}=\mathbf{b} \\
\frac{\partial \mathbf{a}^{\top} \mathbf{M a}}{\partial \mathbf{a}}=2 \mathbf{M a}
\end{gathered}
$$

where \mathbf{M} is a symmetric matrix.

Evaluating Linear Regression Model

- How do we know that a model is good?
- What is a good evaluation/performance metric?

Root Mean Squared Error

$$
R M S E=\sqrt{\sum_{i=1}^{N}\left(y^{i}-\hat{y}^{i}\right)^{2}}
$$

where \hat{y}_{i} is the prediction for the $i^{t h}$ instance.

- What data to evaluate this on?
- Training data?
- Test data (generalization error)

Gradient of a Function

- Denotes the direction of steepest ascent
$\nabla J(\mathbf{w})=\left[\begin{array}{c}\frac{\partial J}{\partial w_{\rho}} \\ \frac{\partial \rho}{\partial w_{1}} \\ \vdots \\ \frac{\partial J}{\partial w_{d}}\end{array}\right]$

Finding Extremes of a Single Variable Function

1. Set derivative to 0

$$
\nabla J(\mathbf{w})=0
$$

2. Check second derivative for minima or maxima or saddle point

Finding Extremes of a Multiple Variable Function Gradient Descent

1. Start from any point in variable space
2. Move along the direction of the steepest descent (or ascent)

- By how much?
- A learning rate (η)
- What is the direction of steepest descent?
- Gradient of J at \mathbf{w}

Training Rule for Gradient Descent

$$
\mathbf{w}=\mathbf{w}-\eta \nabla J(\mathbf{w})
$$

For each weight component:

$$
w_{j}=w_{j}-\eta \frac{\partial J}{\partial w_{j}}
$$

Convergence Guaranteed?

- Error surface contains only one global minimum
- Algorithm will converge
- Examples need not be linearly separable
- η should be small enough
- Impact of too large η ?
- Too small η ?

Issues with Gradient Descent

- Slow convergence
- Stuck in local minima

Stochastic Gradient Descent [1]

- Update weights after every training example.
- For sufficiently small η, closely approximates Gradient Descent.

Gradient Descent	Stochastic Gradient Descent
Weights updated after summing er- ror over all examples	Weights updated after examining each example
More computations per weight up- date step	Significantly lesser computations
Risk of local minima	Avoids local minima

Gradient Descent Based Method

- Minimize the squared loss using Gradient Descent

$$
J(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{N}\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{i}\right)^{2}
$$

- Why?

References

R. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.

Backpropagation applied to handwritten zip code recognition. Neural Comput., 1(4):541-551, Dec. 1989.

[^0]: ${ }^{1}$ Adapted from http://ttic.uchicago.edu/~gregory/courses/ml2012/ lectures/tutorial_optimization.pdf. Also see, http://www.stanford.edu/~boyd/cvxbook/ and http://scipy-lectures.github.io/advanced/mathematical_optimization/.

