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Basics

» Data - scalar (x), vector (x), Matrix (X)

» Numeric (x € R) > Length of a vector > Size of a matrix
» Categorical (e.g., x € R? (X € RM*N)
x € {0,1}) » Vector dot product > Transpose of a
> Constants will be (x-y) matrix (XT)
denoted as D, M, » Norm of a vector » Matrix product
etc. (Il (11 [1]l) (XY))

» A vector is a special matrix with only one column

X-y=x'y

Chandola@UB CSE 474 3/21



Linear Regression

» There is one scalar target variable y
» There is one vector input variable x

» Inductive bias:
y = w'x

Linear Regression Learning Task

Learn w given training examples, (X,y).
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Geometric Interpretation

> Fitting a straight line to d dimensional data
y=w'x

T
Y =W X = WiX] + WoXp + ...+ WgXyg

» Will pass through origin
» Add intercept

Yy =Wwp+ wixy + Woxo + ...+ WgXq

» Equivalent to adding another column in X of 1s.
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Incorporating Bias/Intercept

Explicit Bias Implicit Bias

x = {x1,x0,...,Xd} x = {l,x5,x,...,Xd}
w = {wi,wy,...,wy} w = {wy,w,wa,...,wy}
y = wt+w'x y = wix
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Learning Parameters - Least Squares Approach

» Minimize squared loss

> or, )
J(w) = Sy — Xw) "(y — Xw)

» Make prediction (wx;) as close to the target (y;) as possible
> Least squares estimate

w=(X"X)"IXTy

» We will derive this expression in class.
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Machine Learning as Optimization Problem?

> Learning is optimization

> Faster optimization methods for faster learning

> Let w € R? and S C R? and fh(w), fi(w), ..., fm(w) be real-valued
functions.

» Standard optimization formulation is:

minimize  fo(w)

subject to fi(w)<0,i=1,...,m.

1 Adapted from http://ttic.uchicago.edu/~gregory/courses/m12012/
lectures/tutorial_optimization.pdf. Also see,
http://www.stanford.edu/~boyd/cvxbook/ and
http://scipy-lectures.github.io/advanced/mathematical_optimization/.
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Solving Optimization Problems

» Methods for general optimization problems
» Simulated annealing, genetic algorithms

» Exploiting structure in the optimization problem
» Convexity, Lipschitz continuity, smoothness
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Convexity

Convex Sets Convex Functions
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Convex Optimization

» Optimality Criterion
minimize  fo(w)
w
subject to  fi(w) <0, i=1,...,m.

where all f;(w) are convex functions.
> wy is feasible if wo € Dom fy and all constraints are satisfied

> A feasible w* is optimal if f(w*) < fo(w) for all w satisfying the
constraints
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Matrix Calculus Basics

da'b oOb'a b
Oa OJa
da"Ma

Oa

where M is a symmetric matrix.

= 2Ma
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Evaluating Linear Regression Model

» How do we know that a model is good?

» What is a good evaluation/performance metric?

Root Mean Squared Error

N
S - 97
i=1

where §; is the prediction for the it/ instance.

RMSE =

» What data to evaluate this on?
> Training data?
> Test data (generalization error)
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Gradient of a Function

» Denotes the direction of
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Finding Extremes of a Single Variable Function

1. Set derivative to 0
VJ(w)=0

2. Check second derivative for minima or maxima or saddle point
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Finding Extremes of a Multiple Variable Function -

Gradient Descent

1. Start from any point in variable space
2. Move along the direction of the steepest descent (or ascent)

» By how much?

> A learning rate (n)
» What is the direction of steepest descent?

» Gradient of J at w

Training Rule for Gradient Descent
w=w —nVJ(w)
For each weight component:

oJ

Wi =w, — nN——0
/j /j -
ow;
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Convergence Guaranteed?

» Error surface contains only one global minimum

» Algorithm will converge
> Examples need not be linearly separable

» 1) should be small enough
» Impact of too large n?
» Too small n?
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Issues with Gradient Descent

» Slow convergence
» Stuck in local minima
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Stochastic Gradient Descent [1]

» Update weights after every training example.
» For sufficiently small ), closely approximates Gradient Descent.

Gradient Descent Stochastic Gradient Descent
Weights updated after summing er- | Weights updated after examining
ror over all examples each example

More computations per weight up- | Significantly lesser computations
date step

Risk of local minima Avoids local minima
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Gradient Descent Based Method

» Minimize the squared loss using Gradient Descent

LN
J(w) = 5 D (i —w'x)?

i=1

> Why?
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