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Basics

I Data - scalar (x), vector (x), Matrix (X)

Scalars
I Numeric (x ∈ R)

I Categorical (e.g.,
x ∈ {0, 1})

I Constants will be
denoted as D, M,
etc.

Vector
I Length of a vector

x ∈ RD

I Vector dot product
(x · y)

I Norm of a vector
(|x|, ‖x‖,‖x‖p)

Matrix
I Size of a matrix

(X ∈ RM×N)

I Transpose of a
matrix (X>)

I Matrix product
(XY))

I A vector is a special matrix with only one column

x · y ≡ x>y
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Linear Regression

I There is one scalar target variable y

I There is one vector input variable x

I Inductive bias:
y = w>x

Linear Regression Learning Task

Learn w given training examples, 〈X, y〉.
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Geometric Interpretation

I Fitting a straight line to d dimensional data

y = w>x

y = w>x = w1x1 + w2x2 + . . .+ wdxd

I Will pass through origin

I Add intercept

y = w0 + w1x1 + w2x2 + . . .+ wdxd

I Equivalent to adding another column in X of 1s.
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Incorporating Bias/Intercept

Explicit Bias

x ≡ {x1, x2, . . . , xd}
w ≡ {w1,w2, . . . ,wd}
y = w0 + w>x

Implicit Bias

x ≡ {1, x1, x2, . . . , xd}
w ≡ {w0,w1,w2, . . . ,wd}
y = w>x
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Learning Parameters - Least Squares Approach

I Minimize squared loss

J(w) =
1

2

N∑
i=1

(yi −w>xi )
2

I or,

J(w) =
1

2
(y − Xw)>(y − Xw)

I Make prediction (w>xi ) as close to the target (yi ) as possible

I Least squares estimate

ŵ = (X>X)−1X>y

I We will derive this expression in class.
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Machine Learning as Optimization Problem1

I Learning is optimization

I Faster optimization methods for faster learning

I Let w ∈ Rd and S ⊂ Rd and f0(w), f1(w), . . . , fm(w) be real-valued
functions.

I Standard optimization formulation is:

minimize
w

f0(w)

subject to fi (w) ≤ 0, i = 1, . . . ,m.

1Adapted from http://ttic.uchicago.edu/~gregory/courses/ml2012/

lectures/tutorial_optimization.pdf. Also see,
http://www.stanford.edu/~boyd/cvxbook/ and
http://scipy-lectures.github.io/advanced/mathematical_optimization/.
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Solving Optimization Problems

I Methods for general optimization problems
I Simulated annealing, genetic algorithms

I Exploiting structure in the optimization problem
I Convexity, Lipschitz continuity, smoothness

Chandola@UB CSE 474 9 / 21



Convexity

Convex Sets Convex Functions

y = x2

w1

w2
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Convex Optimization

I Optimality Criterion

minimize
w

f0(w)

subject to fi (w) ≤ 0, i = 1, . . . ,m.

where all fi (w) are convex functions.

I w0 is feasible if w0 ∈ Dom f0 and all constraints are satisfied

I A feasible w∗ is optimal if f0(w∗) ≤ f0(w) for all w satisfying the
constraints
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Matrix Calculus Basics

∂a>b

∂a
=
∂b>a

∂a
= b

∂a>Ma

∂a
= 2Ma

where M is a symmetric matrix.
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Evaluating Linear Regression Model

I How do we know that a model is good?

I What is a good evaluation/performance metric?

Root Mean Squared Error

RMSE =

√√√√ N∑
i=1

(y i − ŷ i )2

where ŷi is the prediction for the i th instance.

I What data to evaluate this on?
I Training data?
I Test data (generalization error)
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Gradient of a Function

I Denotes the direction of
steepest ascent

∇J(w) =


∂J
∂w0
∂J
∂w1

...
∂J
∂wd
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Finding Extremes of a Single Variable Function

1. Set derivative to 0
∇J(w) = 0

2. Check second derivative for minima or maxima or saddle point
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Finding Extremes of a Multiple Variable Function -
Gradient Descent

1. Start from any point in variable space

2. Move along the direction of the steepest descent (or ascent)
I By how much?
I A learning rate (η)
I What is the direction of steepest descent?

I Gradient of J at w

Training Rule for Gradient Descent

w = w − η∇J(w)

For each weight component:

wj = wj − η
∂J

∂wj
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Convergence Guaranteed?

I Error surface contains only one global minimum

I Algorithm will converge
I Examples need not be linearly separable

I η should be small enough

I Impact of too large η?

I Too small η?
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Issues with Gradient Descent

I Slow convergence

I Stuck in local minima
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Stochastic Gradient Descent [1]

I Update weights after every training example.

I For sufficiently small η, closely approximates Gradient Descent.

Gradient Descent Stochastic Gradient Descent
Weights updated after summing er-
ror over all examples

Weights updated after examining
each example

More computations per weight up-
date step

Significantly lesser computations

Risk of local minima Avoids local minima
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Gradient Descent Based Method

I Minimize the squared loss using Gradient Descent

J(w) =
1

2

N∑
i=1

(yi −w>xi )
2

I Why?
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