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1 Generative Models for Discrete Data

• Let X represents the data with multiple discrete attributes

• Y represent the class

Most probable class
P (Y = c|X = x,θ) ∝ P (X = x|Y = c,θ)P (Y = c,θ)

• P (X = x|Y = c,θ) = p(x|y = c,θ)

• p(x|y = c,θ) - class conditional density

• How is the data distributed for each class?

• I give you a set of numbers (training set D) belonging to a concept

• Choose the most likely hypothesis (concept)

• Assume that numbers are between 1 and 100

• Hypothesis Space (H):

– All powers of 2

– All powers of 4

– All even numbers

– All prime numbers

– Numbers close to a fixed number (say 12)

–
...

• Why choose powers of 4 concept over even numbers concept for D =
{1, 4, 16, 64}?

• Avoid suspicious coincidences

• Choose concept with higher likelihood

• What is the likelihood of above D to be generated using the powers of
4 concept?

2



• Likelihood for even numbers concept?

Let h denote the possible concept (or hypothesis). Let |h| or size of h de-
note the count of numbers that satisfy h. So for numbers between 1 and
100, |hfour| (or powers of 4) will be 4 and for even numbers, |heven| = 50.
Likelihood of a data set with N numbers will be given by:

p(D|h) =

[
1

|h|

]N

For the above example, P (D|hfour) = 1/44 and P (D|heven) = 1/504. So the
powers of 4 hypothesis will be selected.

1.1 Likelihood

• Why choose one hypothesis over other?

• Avoid suspicious coincidences

• Choose concept with higher likelihood

p(D|h) =
∏

x∈D
p(x|h)

• Log Likelihood

log p(D|h) =
∑

x∈D
log p(x|h)

1.2 Adding a Prior

• Inside information about the hypotheses

• Some hypotheses are more likely apriori

– May not be the right hypothesis (prior can be wrong)

Note that the prior is specified as a probability distribution over all pos-
sible hypotheses, and not on the possible outcomes.
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1.3 Posterior

• Revised estimates for h after observing evidence (D) and the prior

• Posterior ∝ Likelihood× Prior

p(h|D) =
p(D|h)p(h)∑

h′∈H p(D|h′)p(h′)

For our numbers example, p(h|D) means computing the posterior probability
of h to be one of the 10 hypotheses. Note that the individual likelihoods can
be analytically computed using the formulation:

p(h|D) =

[
I(D ∈ h)

|h|

]|D|

The indicator function I(D ∈ h) is 1 if every example in D is “covered” by
h. Using the likelihood and the prior, one can compute the posterior for the
hypotheses in H. Note that we need the summation of all likelihoods in the
denominator. ∑

h′∈H
p(D|h′)p(h′) = 0.0772× 10−3

h Prior Likelihood Posterior
1 Even 0.300 1.600e-07 1.403e-04
2 Odd 0.075 0.000e+00 0.000e+00
3 Squares 0.075 1.000e-04 2.192e-02
4 Powers of 2 0.100 4.165e-04 1.217e-01
5 Powers of 4 0.075 3.906e-03 8.562e-01
6 Powers of 16 0.075 0.000e+00 0.000e+00
7 Multiples of 5 0.075 0.000e+00 0.000e+00
8 Multiples of 10 0.075 0.000e+00 0.000e+00
9 Numbers within 20 ± 5 0.075 0.000e+00 0.000e+00
10 All Numbers 0.075 1.000e-08 2.192e-06

Maximum A Priori Estimate
ĥprior = arg max

h
p(h)

Maximum Likelihood Estimate (MLE)
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ĥMLE = arg max
h

p(D|h) = arg max
h

log p(D|h)

= arg max
h

∑

x∈D
log p(x|H)

Maximum a Posteriori (MAP) Estimate
ĥMAP = arg max

h
p(D|h)p(h) = arg max

h
(log p(D|h) + log p(h))

• ĥprior - Most likely hypothesis based on prior

• ĥMLE - Most likely hypothesis based on evidence

• ĥMAP - Most likely hypothesis based on posterior

ĥprior = arg max
h

log p(h)

ĥMLE = arg max
h

log p(D|h)

ĥMAP = arg max
h

(log p(D|h) + log p(h))

MLE and MAP give the most likely hypothesis before and after considering
the prior.

• As data increases, MAP estimate converges towards MLE

– Why?

• MAP/MLE are consistent estimators

– If concept is in H, MAP/ML estimates will converge

• If c /∈ H, MAP/ML estimates converge to h which is closest possible
to the truth

As we have seen in our numbers example, MAP estimate can be written as the
sum of log likelihood and log prior for each hypothesis. As data increases, the
log likelihood will increase while the log prior will stay constant. Eventually,
enough data will overwhelm the prior.
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From Prior to Posterior via Likelihood

Prior

Posterior

• Objective: To revise the prior distribution over the hypotheses after
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observing data (evidence).

1.4 Posterior Predictive Distribution

• New input, x∗

• What is the probability that x∗ is also generated by the same concept
as D?

– P (Y = c|X = x∗, D)?

• Option 0: Treat hprior as the true concept

P (Y = c|X = x∗, D) = P (X = x∗|c = hprior)

• Option 1: Treat hMLE as the true concept

P (Y = c|X = x∗, D) = P (X = x∗|c = hMLE)

• Option 2: Treat hMAP as the true concept

P (Y = c|X = x∗, D) = P (X = x∗|c = hMAP )

• Option 3: Bayesian Averaging

P (Y = c|X = x∗, D) =
∑

h

P (X = x∗|c = h)p(h|D)

Posterior provides a notion of belief about the world. How does one use it?
One possible use is to estimate if a new input example belongs to the same
concept as the training data, D.

Bayesian averaging assumes that every hypothesis in H is possible, but
with different probabilities. So the output is also a probability distribution.

2 Steps for Learning a Generative Model

• Example: D is a sequence of N binary values (0s and 1s) (coin tosses)

• What is the best distribution that could describe D?
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• What is the probability of observing a head in future?

Step 1: Choose the form of the model

• Hypothesis Space - All possible distributions

– Too complicated!!

• Revised hypothesis space - All Bernoulli distributions (X ∼ Ber(θ), 0 ≤
θ ≤ 1)

– θ is the hypothesis

– Still infinite (θ can take infinite possible values)

• Likelihood of D
p(D|θ) = θN1(1− θ)N0

Maximum Likelihood Estimate

θ̂MLE = arg max
θ

p(D|θ) = arg max
θ

θN1(1− θ)N0

=
N1

N0 +N1

To compute MLE we set the derivative of the likelihood with respect to θ to
0.

d

dθ
θMLE =

d

dθ
θN1(1− θ)N0

= N1θ
N1−1(1− θ)N0 −N0θ

N1(1− θ)N0−1

= θN1−1(1− θ)N0−1(N1(1− θ)−N0θ)

Setting above to zero:

θN1−1(1− θ)N0−1(N1(1− θ)−N0θ) = 0

N1(1− θ) = N0θ

θ =
N1

N0 +N1

• We can stop here (MLE approach)

• Probability of getting a head next:

p(x∗ = 1|D) = θ̂MLE
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2.1 Incorporating Prior

• Prior encodes our prior belief on θ

• How to set a Bayesian prior?

1. A point estimate: θprior = 0.5

2. A probability distribution over θ (a random variable)

– Which one?

– For a bernoulli distribution 0 ≤ θ ≤ 1

– Beta Distribution
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2.2 Beta Distribution

• Continuous random variables defined between 0 and 1

Beta(θ|a, b) , p(θ|a, b) =
1

B(a, b)
θa−1(1− θ)b−1

• a and b are the (hyper-)parameters for the distribution

• B(a, b) is the beta function

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
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Γ(x) =

∫ ∞

0

ux−1e−udu

If x is integer
Γ(x) = (x− 1)!

• “Control” the shape of the pdf

The gamma function is an extension of factorial to real and complex numbers.
By varying a and b, one can set any prior on θ, including a uniform prior, a
close to point estimate, and a Gaussian prior.

• We can stop here as well (prior approach)

p(x∗ = 1) = θprior

2.3 Conjugate Priors

• Another reason to choose Beta distribution

p(D|θ) = θN1(1− θ)N0

p(θ) ∝ θa−1(1− θ)b−1

• Posterior ∝ Likelihood × Prior

p(θ|D) ∝ θN1(1− θ)N0θa−1(1− θ)b−1
∝ θN1+a−1(1− θ)N0+b−1

• Posterior has same form as the prior

• Beta distribution is a conjugate prior for Bernoulli/Binomial distribu-
tion

Conjugate priors are widely used because they simplify the math and are
easy to interpret.
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2.4 Estimating Posterior

• Posterior

p(θ|D) ∝ θN1+a−1(1− θ)N0+b−1

= Beta(θ|N1 + a,N0 + b)

• We start with a belief that

E[θ] =
a

a+ b

• After observing N trials in which we observe N1 heads and N0 trails,
we update our belief as:

E[θ|D] =
a+N1

a+ b+N

• We know that posterior over θ is a beta distribution

• MAP estimate

θ̂MAP = arg max
θ

p(θ|a+N1, b+N0)

=
a+N1 − 1

a+ b+N − 2

• What happens if a = b = 1?

• We can stop here as well (MAP approach)

• Probability of getting a head next:

p(x∗ = 1|D) = θ̂MAP

Using a = b = 1 means using an uninformative prior, which essentially
reduces the MAP estimate to MLE estimate.
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2.5 Using Predictive Distribution

• All values of θ are possible

• Prediction on an unknown input (x∗) is given by Bayesian Averaging

p(x∗ = 1|D) =

∫ 1

0

p(x = 1|θ)p(θ|D)dθ

=

∫ 1

0

θBeta(θ|a+N1, b+N0)

= E[θ|D]

=
a+N1

a+ b+N

• This is same as using E[θ|D] as a point estimate for θ

2.6 Need for Prior

• Why use a prior?

• Consider D = tails, tails, tails

• N1 = 0, N = 3

• θ̂MLE = 0

• p(x∗ = 1|D) = 0!!

– Never observe a heads

– The black swan paradox

• How does the Bayesian approach help?

p(x∗ = 1|D) =
a

a+ b+ 3
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The
black swan paradox (made famous by an eponymous book by Taleb) essen-
tially states that since one does not observe a phenomenon in the past, he/she
incorrectly induces that it can never occur.

2.7 Need for Bayesian Averaging

• MAP is only one part of the posterior

– θ at which the posterior probability is maximum

– But is that enough?

– What about the posterior variance of θ?

var[θ|D] =
(a+N1)(b+N0)

(a+ b+N)2(a+ b+N + 1)
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– If variance is high then θMAP is not trustworthy

– Bayesian averaging helps in this case

3 Learning Gaussian Models

• pdf for MVN with d dimensions:

N (x|µ,Σ) , 1

(2π)d/2|Σ|1/2 exp
[
−1

2
(x− µ)>Σ−1(x− µ)

]

3.1 Estimating Parameters

Problem Statement
Given a set of N independent and identically distributed (iid) samples,
D, learn the parameters (µ,Σ) of a Gaussian distribution that generated D.

• MLE approach - maximize log-likelihood

• Result

µ̂MLE =
1

N

N∑

i=1

xi , x̄

Σ̂MLE =
1

N

N∑

i=1

(xi − x̄)(xi − x̄)>

Proof of the above estimates can be done by maximizing the log-likelihood
of the data. The log-likelihood is:

l(µ̂, Σ̂) = log p(D|µ̂, Σ̂)

=
N

2
log |Σ−1| − 1

2

N∑

i=1

(xi − µ)>Σ−1(xi − µ)

=
N

2
log |Σ−1| − 1

2

N∑

i=1

yi
>Σ−1yi

where yi = xi − µ (for simplicity).
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Maximizing with respect to µ:

∂

∂µ
yi
>Σ−1yi =

∂

∂yi

yi
>Σ−1yi

∂yi

∂µ

= −(Σ−1 + Σ−T)yi

= −(Σ−1 + Σ−T)(xi − µ)

We make of use of a basic result that ∂
∂x

x>Ax = (A + A>)x. Now when
we plug the above result to the partial derivative of the log-likelihood with
respect to µ:

d

dµ
l(µ̂, Σ̂) =

1

2

N∑

i=1

(Σ−1 + Σ−T )(xi − µ)

Setting this to 0 gives us the optimal value of µ:

µ̂MLE =
1

N

N∑

i=1

xi , x̄

Using the optimal value for µ, we can now differentiate the log-likelihood
with respect to Σ. But before that we apply what is known as the “trace
trick”:

x>Σ−1x = tr(xx>Σ−1)

and rewrite the log-likelihood in terms of Λ = Σ−1:

l(Λ) =
N

2
log |Λ| − 1

2

N∑

i

tr[(xi − µ)(xi − µ)>Λ]

=
N

2
log |Λ| − 1

2
tr[(

N∑

i

(xi − µ)(xi − µ)>)Λ]

=
N

2
log |Λ| − 1

2

N∑

i

tr[SµΛ]

where Sµ ,
∑N

i (xi − µ)(xi − µ)> is the sample scatter matrix. Making use

of the result, ∂ log |A|
∂A

= A−> and ∂AB
∂A

= B>; differentiating with respect to
Λ:

∂

∂Λ
l(Λ) =

N

2
Λ−> − 1

2
Sµ

=
N

2
Σ− 1

2
Sµ

15

Setting to 0, above equation gives the MLE for covariance matrix as:

Σ̂ =
1

N
Sµ

=
1

N

N∑

i

(xi − µ)(xi − µ)>

3.2 Estimating Posterior

• We need posterior for both µ and Σ

p(µ)

p(Σ)

• What distribution do we need to sample µ?

– A Gaussian distribution!

p(µ) = N (µ|m0,V0)

• What distribution do we need to sample Σ?

– An Inverse-Wishart distribution.

p(Σ) = IW (Σ|S, ν)

=
1

ZIW
|Σ|−(ν+D+1)/2exp

(
−1

2
tr(S−1Σ−1)

)

where,
ZIW = |S|−ν/22νD/2ΓD(ν/2)

Posterior for µ - Also a MVN

p(µ|D,Σ) = N (mN,VN)

V−1N = V−10 +NΣ−1

mN = VN(Σ−1(N x̄) + V−10 m0)

Posterior for Σ - Also an Inverse Wishart

p(Σ|D,µ) = IW (SN, νN)

νN = ν0 +N

S−1N = S0 + Sµ
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