Introduction to Machine Learning

Extending Linear Regression

Varun Chandola

March 8, 2021

Outline

Contents

1	Sho	rtcomings of Linear Models	1
2	Har	dling Non-linear Relationships	2
	2.1	Handling Overfitting via Regularization	2
	2.2	Elastic Net Regularization	4
3	Har	dling Outliers in Regression	5

1 Shortcomings of Linear Models

- 1. Susceptible to outliers
- 2. Too simplistic Underfitting
- 3. No way to control overfitting
- 4. Unstable in presence of correlated input attributes
- 5. Gets "confused" by unnecessary attributes

Biggest Issue with Linear Models

- They are linear!!
- Real-world is usually non-linear
- How do learn non-linear fits or non-linear decision boundaries?
 - Basis function expansion
 - Kernel methods (will discuss this later)

2 Handling Non-linear Relationships

• Replace **x** with non-linear functions $\phi(\mathbf{x})$

 $y = \mathbf{w}^\top \boldsymbol{\phi}(\mathbf{x})$

- Model is still linear in ${\bf w}$
- Also known as basis function expansion

Example 1.

$\boldsymbol{\phi}(x) = [1, x, x^2, \dots, x^p]$

• Increasing p results in more complex fits

2.1 Handling Overfitting via Regularization

- Always choose the simpler explanation
- Keep things simple
- Pluralitas non est ponenda sine neccesitate
- A general problem-solving philosophy

There are many ways to describe the Occam's Razor principle. In simple words, if there are two possible explanations for a certain phenomenon, Occam's Razor advocates choosing the "simpler" explanation.

How to Control Overfitting?

- Use simpler models (linear instead of polynomial)
 - Might have poor results (underfitting)
- Use regularized complex models

$$\widehat{\boldsymbol{\Theta}} = \operatorname*{arg\,min}_{\boldsymbol{\Theta}} J(\boldsymbol{\Theta}) + \lambda R(\boldsymbol{\Theta})$$

• R() corresponds to the penalty paid for complexity of the model

 l_2 Regularization

Ridge Regression

$$\widehat{\mathbf{w}} = \operatorname*{arg\,min}_{\mathbf{w}} J(\mathbf{w}) + \frac{1}{2} \lambda \|\mathbf{w}\|_2^2$$

- Helps in reducing impact of correlated inputs
- $\|\mathbf{w}\|_2^2$ is the square of the l_2 norm of the vector \mathbf{w} :

$$\|\mathbf{w}\|_{2}^{2} = \sum_{i=1}^{D} w_{i}^{2}$$

Exact Loss Function

$$\begin{split} I(\mathbf{w}) &= \frac{1}{2} \sum_{i=1}^{N} (y_i - \mathbf{w}^\top \mathbf{x}_i)^2 + \frac{1}{2} \lambda ||\mathbf{w}||_2^2 \\ &= \frac{1}{2} (\mathbf{y} - \mathbf{X} \mathbf{w})^\top (\mathbf{y} - \mathbf{X} \mathbf{w}) + \frac{1}{2} \lambda ||\mathbf{w}||_2^2 \end{split}$$

Ridge Estimate of w

$$\widehat{\mathbf{w}}_{Ridge} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}_D)^{-1}\mathbf{X}^{\top}\mathbf{Y}$$

• I_D is a $(D \times D)$ identity matrix.

3

The above derivation can be easily done by reusing the result from linear regression, where we calculated the gradient of the un-regularized loss function, which was the above term without the regularization parameter. Using the result that: $d = \frac{d}{d} = \frac{1}{d} = \frac{1}{d}$

$$\frac{-}{d\mathbf{w}} \|\mathbf{w}\|_2^2 = 2\mathbf{w}$$
$$\frac{\partial J(\mathbf{w})}{\partial \mathbf{w}} = \mathbf{X}^\top \mathbf{X} \mathbf{w} - \mathbf{X}^\top \mathbf{y} + \lambda \mathbf{w}$$

Setting above to 0 and solving for \mathbf{w} gives us the above result.

Using Gradient Descent with Ridge Regression

- Very similar to OLE
- Minimize the squared loss using *Gradient Descent*

$$J(\mathbf{w}) = \frac{1}{2}(\mathbf{y} - \mathbf{X}\mathbf{w})^{\top}(\mathbf{y} - \mathbf{X}\mathbf{w}) + \frac{1}{2}\lambda||\mathbf{w}||_{2}^{2}$$

$$\nabla J(\mathbf{w}) = \frac{d}{d\mathbf{w}} J(\mathbf{w}) = \frac{1}{2} \frac{d}{d\mathbf{w}} (\mathbf{y} - \mathbf{X}\mathbf{w})^{\top} (\mathbf{y} - \mathbf{X}\mathbf{w}) + \frac{1}{2} \lambda \frac{d}{d\mathbf{w}} \|\mathbf{w}\|_{2}^{2}$$
$$= \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - \mathbf{X}^{\top} \mathbf{y} + \lambda \mathbf{w}$$

Using the above result, one can perform repeated updates of the weights:

 $\mathbf{w} := \mathbf{w} - \eta \nabla J(\mathbf{w})$

l₁ Regularization

Least Absolute Shrinkage and Selection Operator - LASSO $\widehat{\mathbf{w}} = \argmin_{\mathbf{w}} J(\mathbf{w}) + \lambda |\mathbf{w}|$

- Helps in feature selection favors sparse solutions
- Optimization is not as straightforward as in Ridge regression
 - Gradient not defined for $w_i = 0, \forall i$

2.2 Elastic Net Regularization

LASSO vs. Ridge

- Both control overfitting
- Ridge helps reduce impact of correlated inputs, LASSO helps in feature selection
- Rule of thumb
 - $-\,$ If data has many features but only few are potentially useful, use LASSO
 - If data has potentially many correlated features, use Ridge

Elastic Net Regularization

$$\widehat{\mathbf{w}} = \operatorname*{arg\,min}_{\mathbf{w}} J(\mathbf{w}) + \lambda_1 \|\mathbf{w}\| + \lambda_2 \|\mathbf{w}\|_2^2$$

- The best of both worlds
- $\bullet\,$ Again, optimizing for ${\bf w}$ is not straightforward

3 Handling Outliers in Regression

- Linear regression training gets impacted by the presence of outliers
- The square term in loss function is the culprit
- How to handle this (*Robust Regression*)?
 - Least absolute deviations instead of least squares

$$J(\mathbf{w}) = \sum_{i=1}^{N} |y_i - \mathbf{w}^\top \mathbf{x}|$$

References