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1 Shortcomings of Linear Models

1. Susceptible to outliers

2. Too simplistic - Underfitting

3. No way to control overfitting

4. Unstable in presence of correlated input attributes

5. Gets “confused” by unnecessary attributes

Biggest Issue with Linear Models

• They are linear!!

• Real-world is usually non-linear

• How do learn non-linear fits or non-linear decision boundaries?

– Basis function expansion

– Kernel methods (will discuss this later)

2 Handling Non-linear Relationships

• Replace x with non-linear functions φ(x)

y = w>φ(x)

• Model is still linear in w

• Also known as basis function expansion

Example 1.
φ(x) = [1, x, x2, . . . , xp]

• Increasing p results in more complex fits

2.1 Handling Overfitting via Regularization

• Always choose the simpler explanation

• Keep things simple

• Pluralitas non est ponenda sine neccesitate

• A general problem-solving philosophy

There are many ways to describe the Occam’s Razor principle. In simple
words, if there are two possible explanations for a certain phenomenon, Oc-
cam’s Razor advocates choosing the “simpler” explanation.
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How to Control Overfitting?

• Use simpler models (linear instead of polynomial)

– Might have poor results (underfitting)

• Use regularized complex models

Θ̂ = arg min
Θ

J(Θ) + λR(Θ)

• R() corresponds to the penalty paid for complexity of the model

l2 Regularization

Ridge Regression

ŵ = arg min
w

J(w) +
1

2
λ‖w‖22

• Helps in reducing impact of correlated inputs

• ‖w‖22 is the square of the l2 norm of the vector w:

‖w‖22 =
D∑

i=1

w2
i

Exact Loss Function

J(w) =
1

2

N∑

i=1

(yi −w>xi)
2 +

1

2
λ||w||22

=
1

2
(y −Xw)>(y −Xw) +

1

2
λ||w||22

Ridge Estimate of w
ŵRidge = (X>X + λID)−1X>y

• ID is a (D ×D) identity matrix.
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The above derivation can be easily done by reusing the result from linear
regression, where we calculated the gradient of the un-regularized loss func-
tion, which was the above term without the regularization parameter. Using
the result that:

d

dw
‖w‖22 = 2w

∂J(w)

∂w
= X>Xw −X>y + λw

Setting above to 0 and solving for w gives us the above result.

Using Gradient Descent with Ridge Regression

• Very similar to OLE

• Minimize the squared loss using Gradient Descent

J(w) =
1

2
(y −Xw)>(y −Xw) +

1

2
λ||w||22

∇J(w) =
d

dw
J(w) =

1

2

d

dw
(y −Xw)>(y −Xw) +

1

2
λ
d

dw
‖w‖22

= X>Xw −X>y + λw

Using the above result, one can perform repeated updates of the weights:

w := w − η∇J(w)

l1 Regularization

Least Absolute Shrinkage and Selection Operator - LASSO
ŵ = arg min

w
J(w) + λ|w|

• Helps in feature selection – favors sparse solutions

• Optimization is not as straightforward as in Ridge regression

– Gradient not defined for wi = 0, ∀i
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2.2 Elastic Net Regularization

LASSO vs. Ridge

• Both control overfitting

• Ridge helps reduce impact of correlated inputs, LASSO helps in feature
selection

• Rule of thumb

– If data has many features but only few are potentially useful, use
LASSO

– If data has potentially many correlated features, use Ridge

Elastic Net Regularization
ŵ = arg min

w
J(w) + λ1|w|+ λ2‖w‖22

• The best of both worlds

• Again, optimizing for w is not straightforward

3 Handling Outliers in Regression

• Linear regression training gets impacted by the presence of outliers

• The square term in loss function is the culprit

• How to handle this (Robust Regression)?

– Least absolute deviations instead of least squares

J(w) =
N∑

i=1

|yi −w>x|
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