Introduction to Machine Learning

Decision Trees

Varun Chandola

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu

Outline

Explainable Machine Learning

Why Decision Trees?

- Linear models are easy to interpret/explain but have limited power
- ▶ Non-linear models can be more accurate but are "black-boxes"

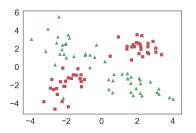
Why do we care about interpretability and explainability?

- ▶ Builds trust, transparency, and accountability into the model
- Needed for fairness and ethical considerations of ML

3 / 10

Decision Trees

▶ Inherently "non-linear" model



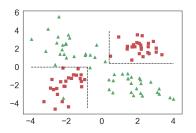
- ► No linear boundary
- **Divide** the region (\mathcal{X}) into non-intersecting sub-regions

$$\mathcal{X} = \bigcup_{i=0}^{n} R_i$$

s.t. $R_i \cap R_j = \emptyset$, for $i \neq j$

Decision Trees

▶ Inherently "non-linear" model



- ► No linear boundary
- **Divide** the region (\mathcal{X}) into non-intersecting sub-regions

$$\mathcal{X} = \bigcup_{i=0}^{n} R_i$$

s.t. $R_i \cap R_j = \emptyset$, for $i \neq j$

How to select regions

- Computationally intractable
- Decision trees approximate solution via a greedy, top-down, recursive partitioning scheme.
- ightharpoonup Start with ${\mathcal X}$ and split it into two child regions by thresholding on a single feature
- Continue splitting nodes using a feature and a threshold
- ► Formally, given a parent region R_p , a feature index j, and a threshold $t \in \mathbb{R}$, we obtain two child regions as:

$$R_{p1} = \{\mathbf{x} | x_j < t, \mathbf{x} \in R_p\}$$

 $R_{p2} = \{\mathbf{x} | x_j \ge t, \mathbf{x} \in R_p\}$

How to choose the splits?

- ightharpoonup Need a loss function L() as a set function on a region R
- For a given parent R_p , we can calculate the decrease in loss as:

$$\delta = L(R_p) - \frac{|R_1|L(R_1) + |R_2|L(R_2)}{|R_1| + |R_2|}$$

Cross-entropy Loss

$$L_{cross}(R) = -\sum_{c} \hat{p}_{c} \log_{2} \hat{p}_{c}$$

 \hat{p}_c is the probability of observing an example of class c in the given node

$$\hat{\rho}_c = \frac{|\mathbf{x} : class(\mathbf{x}) = c, \mathbf{x} \in R|}{|R|}$$

▶ If $\hat{p}_c = 0$ then $\hat{p} \log_2 \hat{p} \equiv 0$

Alternatives Cross-entropy Loss

Gini Index/Loss

$$L_{gini}(R) = 1 - \sum_{c} \hat{
ho}_c^2$$

Other Considerations

- ► Categorical features
- Regularization (pruning)
- ► Computational complexity O(N * D * d)
 - N number of training examples
 - ▶ *D* number of features
 - ▶ d depth of the tree

Variants of Decision Trees

- ▶ Regression Trees Use a different loss function
- ▶ Random Forests An ensemble of decision trees

References