## Introduction to Machine Learning

Statistical Machine Learning
Varun Chandola
March 29, 2021

## Outline

## Contents

1 Statistical Machine Learning - Introduction 1
2 Introduction to Probability 2
3 Random Variables 2
4 Bayes Rule 4
5 Different Types of Distributions 8
6 Handling Multivariate Distributions 11

## 1 Statistical Machine Learning - Introduction

## Statistical Machine Learning

Functional Methods

- $y=f(\mathbf{x})$
- Learn $f()$ using training data
- $y^{*}=f\left(\mathbf{x}^{*}\right)$ for a test data instance


## Statistical/Probabilistic Methods

- Calculate the conditional probability of the target to be $y$, given that the input is $\mathbf{x}$
- Assume that $y \mid \mathbf{x}$ is random variable generated from a probability distribution
- Learn parameters of the distribution using training data


## 2 Introduction to Probability

## 3 Random Variables

- A variable whose value depends on a random phenomenon
- Mapping random processes to numbers (or values)
- Usually denoted using an upper case letter, $X, Y, \ldots$
- A random variable has
- A domain: Set of possible values that $X$ can take (denoted as $\mathcal{X})$
- A probability measure $(f())$ that assigns the probability of $X$ to belong to a subset of $\mathcal{X}$, i.e., $P(X \in S \mid S \in \mathcal{X})$, with two requirements:
* $0 \leq f(S) \leq 1$
* $\sum_{i} f\left(S_{i}\right)=1$, where $S_{1}, S_{2}, \ldots$ are mutually disjoint subsets of $\mathcal{X}$ and $\cup_{i} S_{i}=\mathcal{X}$
- An instance of the probability measure is a probability distribution which assigns probability to every element in $\mathcal{X}$

The notion of a random event and a random variable are closely related Essentially, any random or probabilistic event can be represented as a random variable $X$ taking a value $x$.

The quantity $P(A=a)$ denotes the probability that the event $A=$ $a$ is true (or has happened). Another notation that will be used is $p(X)$ which denotes the distribution. For discrete variables, $p$ is also known as the probability mass function. For continuous variables, $p$ is known as the probability density function.

A probability distribution is the enumeration of $P(X=x), \forall x \in \mathcal{X}$.

## Two basic types of random variables

## Discrete Random Variable

- $\mathcal{X}$ is finite/countably finite
- $P(X=x)$ or $P(x)$ is the probability of $X$ taking value $x$
- Categorical?? Categorical variables are those for which the possible values cannot be ordered, e.g., - a coin toss can produce a heads or a tail. The outcome of the toss is a categorical random variable.


## Continuous Random Variable

- $\mathcal{X}$ is infinite
- Probability of any one value is 0
- Can only talk about range of values:

$$
P(a<X \leq b)
$$

- We define the probability density function at any location, $p(x)$ or $f(x)$

$$
P(a<X \leq b)=\int_{a}^{b} p(x) d x
$$

$p(x)$ or the pdf for a continuous variable need not be less than 1 as it is not the probability of any event. But $p(x) d x$ for any interval $d x$ is a probability and should be less than 0

## Notation

- $X$ - random variable ( $\mathbf{X}$ if multivariate)
- $x$ - a specific value taken by the random variable (( x if multivariate) $)$
- $P(X=x)$ or $P(x)$ is the probability of the event $X=x$
- $p(x)$ is either the probability mass function (discrete) or probability density function (continuous) for the random variable $X$ at $x$
- Probability mass (or density) at $x$


## Basic Rules

- For two events A and B:

$$
-P(A \vee B)=P(A)+P(B)-P(A \wedge B)
$$

## - Joint Probability

* $P(A, B)=P(A \wedge B)=P(A \mid B) P(B)$
* Also known as the product rule


## - Conditional Probability

$$
\text { * } P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

Note that we interpret $P(A)$ as the probability of the random variable to take the value $A$. The event, in this case is, the random variable taking the value $A$.

- Given $D$ random variables, $\left\{X_{1}, X_{2}, \ldots, X_{D}\right\}$
$P\left(X_{1}, X_{2}, \ldots, X_{D}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots P\left(X_{D} \mid X_{1}, X_{2}, \ldots, X_{D}\right)$
- Given $P(A, B)$ what is $P(A)$ ?
- Sum $P(A, B)$ over all values for $B$

$$
P(A)=\sum_{b} P(A, B)=\sum_{b} P(A \mid B=b) P(B=b)
$$

- Sum rule


## 4 Bayes Rule

- Computing $P(X=x \mid Y=y)$ :


## Bayes Theorem

$$
\begin{aligned}
P(X=x \mid Y=y) & =\frac{P(X=x, Y=y)}{P(Y=y)} \\
& =\frac{P(X=x) P(Y=y \mid X=x)}{\sum_{x^{\prime}} P\left(X=x^{\prime}\right) P\left(Y=y \mid X=x^{\prime}\right)}
\end{aligned}
$$

## Bayes Theorem: Example

- Medical Diagnosis
- Random event 1: A test is positive or negative $(X)$
- Random event 2: A person has cancer $(Y)$ - yes or no
- What we know:

1. Test has accuracy of $80 \%$
2. Number of times the test is positive when the person has cancer

$$
P(X=1 \mid Y=1)=0.8
$$

3. Prior probability of having cancer is $0.4 \%$

$$
P(Y=1)=0.004
$$

## Question?

If I test positive, does it mean that I have $80 \%$ rate of cancer?

- Ignored the prior information
- What we need is:

$$
P(Y=1 \mid X=1)=?
$$

- More information
- False positive (alarm) rate for the test

$$
-P(X=1 \mid Y=0)=0.1
$$

$$
\begin{aligned}
P(Y=1 \mid X=1) & =\frac{P(X=1 \mid Y=1) P(Y=1)}{P(X=1 \mid Y=1) P(Y=1)+P(X=1 \mid Y=0) P(Y=0)} \\
P(Y=1 \mid X=1) & =\frac{P(X=1 \mid Y=1) P(Y=1)}{P(X=1 \mid Y=1) P(Y=1)+P(X=1 \mid Y=0) P(Y=0)} \\
& =\frac{0.8 \times 0.004}{0.8 \times 0.004+0.1 \times 0.996} \\
& =0.031
\end{aligned}
$$

## Classification Using Bayes Rule

- Given input example $\mathbf{x}$, find the true class

$$
P(Y=c \mid \mathbf{X}=\mathbf{x})
$$

- $Y$ is the random variable denoting the true class
- Assuming the class-conditional probability is known

$$
P(\mathbf{X}=\mathbf{x} \mid Y=c)
$$

- Applying Bayes Rule

$$
P(Y=c \mid \mathbf{X}=\mathbf{x})=\frac{P(Y=c) P(\mathbf{X}=\mathbf{x} \mid Y=c)}{\left.\sum_{c} P\left(Y=c^{\prime}\right)\right) P\left(\mathbf{X}=\mathbf{x} \mid Y=c^{\prime}\right)}
$$

## Independence and Conditional Independence

- One random variable does not depend on another
- $A \perp B \Longleftrightarrow P(A, B)=P(A) P(B)$
- Joint written as a product of marginals

Two random variables are independent, if the probability of one variable taking a certain value is not dependent on what value the other variable takes. Unconditional independence is typically rare, since most variables can influence other variables.

- Conditional Independence

$$
A \perp B \mid C \Longleftrightarrow P(A, B \mid C)=P(A \mid C) P(B \mid C)
$$

Conditional independence is more widely observed. The idea is that all the information from $B$ to $A$ "flows" through $C$. So $B$ does not add any more information to $A$ and hence is independent conditionally.

## Expectation

- Let $g(X)$ be a function of $X$
- If $X$ is discrete:

$$
\mathbb{E}[g(X)] \triangleq \sum_{x \in \mathcal{X}} g(x) P(X=x)
$$

- If $X$ is continuous:

$$
\mathbb{E}[g(X)] \triangleq \int_{\mathcal{X}} g(x) p(x) d x
$$

## Properties

- $\mathbb{E}[c]=c, c$ - constant
- If $X \leq Y$, then $\mathbb{E}[X] \leq \mathbb{E}[Y]$
- $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$
- $\mathbb{E}[a X]=a \mathbb{E}[X]$
- $\operatorname{var}[X]=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mu^{2}$
- $\operatorname{Cov}[X, Y]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$
- Jensen's inequality: If $\varphi(X)$ is convex,

$$
\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)]
$$

- Expected value of a random variable
- What is most likely to happen in terms of $X$ ?
- For discrete variables

$$
\mathbb{E}[X] \triangleq \sum_{x \in \mathcal{X}} x P(X=x)
$$

- For continuous variables

$$
\mathbb{E}[X] \triangleq \int_{\mathcal{X}} x p(x) d x
$$

- Mean of $X(\mu)$

While the probability distribution provides you the probability of observing any particular value for a given random variable, if you need to obtain one representative value from a probability distribution, it is the expected value. Another way to understand it is that a probability distribution can give any sample, but the expected value is the most likely sample.

Another way to explain the expectation of a random variable is a weighted average of values taken by the random variable over multiple trials.

- Spread of the distribution

$$
\begin{aligned}
\operatorname{var}[X] & \triangleq \mathbb{E}\left((X-\mu)^{2}\right) \\
& =\mathbb{E}\left(X^{2}\right)-\mu^{2}
\end{aligned}
$$

$\operatorname{var}[X] \triangleq \mathbb{E}\left((X-\mu)^{2}\right)$
$=\int(x-\mu)^{2} p(x) d x$
$=\int x^{2} p(x) d x+\mu^{2} \int p(x) d x-2 \mu x p(x) d x$
$=\mathbb{E}\left(X^{2}\right)-\mu^{2}$

## 5 Different Types of Distributions

## Discrete

- Binomial,Bernoulli
- Multinomial, Multinoull
- Poisson
- Empirical


## Continuous

- Gaussian (Normal)
- Degenerate pdf
- Laplace
- Gamma
- Beta
- Pareto


## Discrete Distributions

## Binomial Distribution

- $X=$ Number of heads observed in $n$ coin tosses
- Parameters: $n, \theta$
- $X \sim \operatorname{Bin}(n, \theta)$
- Probability mass function ( $p m f$ )

$$
\operatorname{Bin}(k \mid n, \theta) \triangleq\binom{n}{k} \theta^{k}(1-\theta)^{n-k}
$$

Bernoulli Distribution

- Binomial distribution with $n=1$
- Only one parameter ( $\boldsymbol{\theta}$

The pmf is nothing by the number of ways to choose $k$ from a set of $n$ multiplied by the probability of choosing $k$ heads and rest $n-k$ tails.

## Multinomial Distribution

- Simulates a $K$ sided die
- Random variable $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{K}\right)$
- Parameters: $n, \theta$
- $\theta \leftarrow \Re^{K}$
- $\theta_{j}$ - probability that $j^{\text {th }}$ side shows up

$$
M u(\mathbf{x} \mid n, \boldsymbol{\theta}) \triangleq\binom{n}{x_{1}, x_{2}, \ldots, x_{K}} \prod_{j=1}^{K} \theta_{j}^{x_{j}}
$$

## Multinoulli Distribution

- Multinomial distribution with $n=1$
- $\mathbf{x}$ is a vector of 0 s and 1 s with only one bit set to 1
- Only one parameter $(\theta)$

$$
\binom{n}{x_{1}, x_{2}, \ldots, x_{K}}=\frac{n!}{x_{1}!x_{2}!\ldots x_{K}!}
$$

## Continuous Distributions

Gaussian Distribution

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \triangleq \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}}
$$

- Parameters:

1. $\mu=\mathbb{E}[X]$
2. $\sigma^{2}=\operatorname{var}[X]=\mathbb{E}\left[(X-\mu)^{2}\right]$

- $X \sim \mathcal{N}\left(\mu, \sigma^{2}\right) \Leftrightarrow p(X=x)=\mathcal{N}\left(\mu, \sigma^{2}\right)$
- $X \sim \mathcal{N}(0,1) \Leftarrow X$ is a standard normal random variable
- Cumulative distribution function

$$
\Phi\left(x ; \mu, \sigma^{2}\right) \triangleq \int_{-\infty}^{x} \mathcal{N}\left(z \mid \mu, \sigma^{2}\right) d z
$$

Gaussian distribution is the most widely used (and naturally occuring) distribution. The parameters $\mu$ is the mean and the mode for the distribution. If the variance $\sigma^{2}$ is reduced, the cdf for the Gaussian becomes more "spiky" around the mean and for limit $\sigma^{2} \leftarrow 0$, the Gaussian becomes infinitely tall.

$$
\lim _{\sigma^{2} \leftarrow 0} \mathcal{N}\left(\mu, \sigma^{2}\right)=\delta(x-\mu)
$$

where $\delta$ is the Dirac delta function

$$
\delta(x)= \begin{cases}\infty & \text { if } x=0 \\ 0 & \text { if } x \neq 0\end{cases}
$$

## 6 Handling Multivariate Distributions

## Joint Probability Distributions

- Multiple related random variables
- $p\left(x_{1}, x_{2}, \ldots, x_{D}\right)$ for $D>1$ variables $\left(X_{1}, X_{2}, \ldots, X_{D}\right)$
- Discrete random variables?
- Continuous random variables?
- What do we measure?


## Covariance

- How does $X$ vary with respect to $Y$
- For linear relationship:

$$
\operatorname{cov}[X, Y] \triangleq \mathbb{E}[(X-\mathbb{E}[X])(Y-\mathbb{E}[Y])]=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]
$$

For discrete random variables, the joint probability distribution can be rep resented as a multi-dimensional array of size $O\left(K^{D}\right)$ where $K$ is the number of possible values taken by each variable. This can be reduced by exploiting conditional independence, as we shall see when we cover Bayesian networks.

Joint distribution is trickier with continuous variables since each variabl can take infinite values. In this case, we represent the joint distribution by assuming certain functional form.

## Covariance and Correlation

- x is a $d$-dimensional random vector

$$
\begin{gathered}
\operatorname{cov}[\mathbf{X}] \triangleq \mathbb{E}\left[(\mathbf{X}-\mathbb{E}[\mathbf{X}])(\mathbf{X}-\mathbb{E}[\mathbf{X}])^{\top}\right] \\
=\left(\begin{array}{cccc}
\operatorname{var}\left[X_{1}\right] & \operatorname{cov}\left[X_{1}, X_{2}\right] & \cdots & \operatorname{cov}\left[X_{1}, X_{d}\right] \\
\operatorname{cov}\left[X_{2}, X_{1}\right] & \operatorname{var}\left[X_{2}\right] & \cdots & \operatorname{cov}\left[X_{2}, X_{d}\right] \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{cov}\left[X_{d}, X_{1}\right] & \operatorname{cov}\left[X_{d}, X_{2}\right] & \cdots & \operatorname{var}\left[X_{d}\right]
\end{array}\right)
\end{gathered}
$$

- Covariances can be between 0 and $\infty$
- Normalized covariance $\Rightarrow$ Correlation
- Pearson Correlation Coefficient

$$
\operatorname{corr}[X, Y] \triangleq \frac{\operatorname{cov}[X, Y]}{\sqrt{\operatorname{var}[X] \operatorname{var}[Y]}}
$$

- What is $\operatorname{corr}[X, X]$ ?
$-1 \leq \operatorname{corr}[X, Y] \leq 1$
- When is $\operatorname{corr}[X, Y]=1$ ?

$$
-Y=a X+b
$$

Multivariate Gaussian Distribution

- Most widely used joint probability distribution

$$
\mathcal{N}(\mathbf{X} \mid \mu, \boldsymbol{\Sigma}) \triangleq \frac{1}{(2 \pi)^{D / 2}|\boldsymbol{\Sigma}|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\mu)^{\top} \boldsymbol{\Sigma}^{-\mathbf{1}}(\mathbf{x}-\mu)\right]
$$

References

