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1 Statistical Machine Learning - Introduction

Statistical Machine Learning

Functional Methods

• y = f(x)

• Learn f() using training data

• y∗ = f(x∗) for a test data instance

Statistical/Probabilistic Methods

• Calculate the conditional probability of the target to be y, given that
the input is x

• Assume that y|x is random variable generated from a probability dis-
tribution

• Learn parameters of the distribution using training data

2 Introduction to Probability

3 Random Variables

• A variable whose value depends on a random phenomenon

– Mapping random processes to numbers (or values)

• Usually denoted using an upper case letter, X, Y, . . .

• A random variable has:

– A domain: Set of possible values that X can take (denoted as
X )

– A probability measure (f()) that assigns the probability of X
to belong to a subset of X , i.e., P (X ∈ S|S ∈ X ), with two
requirements:

∗ 0 ≤ f(S) ≤ 1

∗
∑

i f(Si) = 1, where S1, S2, . . . are mutually disjoint subsets
of X and ∪iSi = X

• An instance of the probability measure is a probability distribution
which assigns probability to every element in X

The notion of a random event and a random variable are closely related.
Essentially, any random or probabilistic event can be represented as a random
variable X taking a value x.
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The quantity P (A = a) denotes the probability that the event A =
a is true (or has happened). Another notation that will be used is p(X)
which denotes the distribution. For discrete variables, p is also known as the
probability mass function. For continuous variables, p is known as the
probability density function.

A probability distribution is the enumeration of P (X = x), ∀x ∈ X .

Two basic types of random variables

Discrete Random Variable

• X is finite/countably finite

• P (X = x) or P (x) is the probability of X taking value x

– Categorical?? Categorical variables are those for which the pos-
sible values cannot be ordered, e.g., - a coin toss can produce a
heads or a tail. The outcome of the toss is a categorical random
variable.

Continuous Random Variable

• X is infinite

• Probability of any one value is 0

• Can only talk about range of values:

P (a < X ≤ b)

• We define the probability density function at any location, p(x) or
f(x)

P (a < X ≤ b) =

∫ b

a

p(x)dx

p(x) or the pdf for a continuous variable need not be less than 1 as it is not
the probability of any event. But p(x)dx for any interval dx is a probability
and should be less than 0.
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Notation

• X - random variable (X if multivariate)

• x - a specific value taken by the random variable ((x if multivariate))

• P (X = x) or P (x) is the probability of the event X = x

• p(x) is either the probability mass function (discrete) or proba-
bility density function (continuous) for the random variable X at
x

– Probability mass (or density) at x

Basic Rules

• For two events A and B:

– P (A ∨B) = P (A) + P (B)− P (A ∧B)

– Joint Probability

∗ P (A,B) = P (A ∧B) = P (A|B)P (B)

∗ Also known as the product rule

– Conditional Probability

∗ P (A|B) = P (A,B)
P (B)

Note that we interpret P (A) as the probability of the random variable to
take the value A. The event, in this case is, the random variable taking the
value A.

• Given D random variables, {X1, X2, . . . , XD}

P (X1, X2, . . . , XD) = P (X1)P (X2|X1)P (X3|X1, X2) . . . P (XD|X1, X2, . . . , XD)

• Given P (A,B) what is P (A)?

– Sum P (A,B) over all values for B

P (A) =
∑

b

P (A,B) =
∑

b

P (A|B = b)P (B = b)

– Sum rule
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4 Bayes Rule

• Computing P (X = x|Y = y):

Bayes Theorem

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)

=
P (X = x)P (Y = y|X = x)∑
x′ P (X = x′)P (Y = y|X = x′)

Bayes Theorem: Example

• Medical Diagnosis

• Random event 1: A test is positive or negative (X)

• Random event 2: A person has cancer (Y ) – yes or no

• What we know:

1. Test has accuracy of 80%

2. Number of times the test is positive when the person has cancer

P (X = 1|Y = 1) = 0.8

3. Prior probability of having cancer is 0.4%

P (Y = 1) = 0.004

Question?

If I test positive, does it mean that I have 80% rate of cancer?

• Ignored the prior information

• What we need is:
P (Y = 1|X = 1) =?

• More information:
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– False positive (alarm) rate for the test

– P (X = 1|Y = 0) = 0.1

P (Y = 1|X = 1) =
P (X = 1|Y = 1)P (Y = 1)

P (X = 1|Y = 1)P (Y = 1) + P (X = 1|Y = 0)P (Y = 0)

P (Y = 1|X = 1) =
P (X = 1|Y = 1)P (Y = 1)

P (X = 1|Y = 1)P (Y = 1) + P (X = 1|Y = 0)P (Y = 0)

=
0.8× 0.004

0.8× 0.004 + 0.1× 0.996
= 0.031

Classification Using Bayes Rule

• Given input example x, find the true class

P (Y = c|X = x)

• Y is the random variable denoting the true class

• Assuming the class-conditional probability is known

P (X = x|Y = c)

• Applying Bayes Rule

P (Y = c|X = x) =
P (Y = c)P (X = x|Y = c)∑
c P (Y = c′))P (X = x|Y = c′)

Independence and Conditional Independence

• One random variable does not depend on another

• A ⊥ B ⇐⇒ P (A,B) = P (A)P (B)

• Joint written as a product of marginals
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Two random variables are independent, if the probability of one variable
taking a certain value is not dependent on what value the other variable
takes. Unconditional independence is typically rare, since most variables can
influence other variables.

• Conditional Independence

A ⊥ B|C ⇐⇒ P (A,B|C) = P (A|C)P (B|C)

Conditional independence is more widely observed. The idea is that all the
information from B to A “flows” through C. So B does not add any more
information to A and hence is independent conditionally.

Expectation

• Let g(X) be a function of X

• If X is discrete:
E[g(X)] ,

∑

x∈X
g(x)P (X = x)

• If X is continuous:

E[g(X)] ,
∫

X
g(x)p(x)dx

Properties

• E[c] = c, c - constant

• If X ≤ Y , then E[X] ≤ E[Y ]

• E[X + Y ] = E[X] + E[Y ]

• E[aX] = aE[X]

• var[X] = E[(X − µ)2] = E[X2]− µ2

• Cov[X, Y ] = E[XY ]− E[X]E[Y ]

• Jensen’s inequality: If ϕ(X) is convex,

ϕ(E[X]) ≤ E[ϕ(X)]
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• Expected value of a random variable

E[X]

• What is most likely to happen in terms of X?

• For discrete variables

E[X] ,
∑

x∈X
xP (X = x)

• For continuous variables

E[X] ,
∫

X
xp(x)dx

• Mean of X (µ)

While the probability distribution provides you the probability of observing
any particular value for a given random variable, if you need to obtain one
representative value from a probability distribution, it is the expected value.
Another way to understand it is that a probability distribution can give any
sample, but the expected value is the most likely sample.

Another way to explain the expectation of a random variable is a weighted
average of values taken by the random variable over multiple trials.

• Spread of the distribution

var[X] , E((X − µ)2)

= E(X2)− µ2

var[X] , E((X − µ)2)

=

∫
(x− µ)2p(x)dx

=

∫
x2p(x)dx+ µ2

∫
p(x)dx− 2µxp(x)dx

= E(X2)− µ2
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5 Different Types of Distributions

Discrete

• Binomial,Bernoulli

• Multinomial, Multinoulli

• Poisson

• Empirical

Continuous

• Gaussian (Normal)

• Degenerate pdf

• Laplace

• Gamma

• Beta

• Pareto

Discrete Distributions

Binomial Distribution

• X = Number of heads observed in n coin tosses

• Parameters: n, θ

• X ∼ Bin(n, θ)

• Probability mass function (pmf)

Bin(k|n, θ) ,
(
n

k

)
θk(1− θ)n−k

Bernoulli Distribution
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• Binomial distribution with n = 1

• Only one parameter (θ)

The pmf is nothing by the number of ways to choose k from a set of n
multiplied by the probability of choosing k heads and rest n− k tails.

Multinomial Distribution

• Simulates a K sided die

• Random variable x = (x1, x2, . . . , xK)

• Parameters: n, θ

• θ ← <K

• θj - probability that jth side shows up

Mu(x|n,θ) ,
(

n

x1, x2, . . . , xK

) K∏

j=1

θ
xj
j

Multinoulli Distribution

• Multinomial distribution with n = 1

• x is a vector of 0s and 1s with only one bit set to 1

• Only one parameter (θ)

(
n

x1, x2, . . . , xK

)
=

n!

x1!x2! . . . xK !

Continuous Distributions

Gaussian Distribution

N (x|µ, σ2) , 1√
2πσ2

e−
1

2σ2
(x−µ)2

• Parameters:
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1. µ = E[X]

2. σ2 = var[X] = E[(X − µ)2]

• X ∼ N (µ, σ2)⇔ p(X = x) = N (µ, σ2)

• X ∼ N (0, 1) ⇐ X is a standard normal random variable

• Cumulative distribution function:

Φ(x;µ, σ2) ,
∫ x

−∞
N (z|µ, σ2)dz

Gaussian distribution is the most widely used (and naturally occuring) dis-
tribution. The parameters µ is the mean and the mode for the distribution.
If the variance σ2 is reduced, the cdf for the Gaussian becomes more “spiky”
around the mean and for limit σ2 ← 0, the Gaussian becomes infinitely tall.

lim
σ2←0

N (µ, σ2) = δ(x− µ)

where δ is the Dirac delta function:

δ(x) =

{
∞ if x = 0
0 if x 6= 0

6 Handling Multivariate Distributions

Joint Probability Distributions

• Multiple related random variables

• p(x1, x2, . . . , xD) for D > 1 variables (X1, X2, . . . , XD)

• Discrete random variables?

• Continuous random variables?

• What do we measure?

Covariance

• How does X vary with respect to Y
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• For linear relationship:

cov[X, Y ] , E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]

For discrete random variables, the joint probability distribution can be rep-
resented as a multi-dimensional array of size O(KD) where K is the number
of possible values taken by each variable. This can be reduced by exploiting
conditional independence, as we shall see when we cover Bayesian networks.

Joint distribution is trickier with continuous variables since each variable
can take infinite values. In this case, we represent the joint distribution by
assuming certain functional form.

Covariance and Correlation

• x is a d-dimensional random vector

cov[X] , E[(X− E[X])(X− E[X])>]

=




var[X1] cov[X1, X2] · · · cov[X1, Xd]
cov[X2, X1] var[X2] · · · cov[X2, Xd]

...
...

. . .
...

cov[Xd, X1] cov[Xd, X2] · · · var[Xd]




• Covariances can be between 0 and ∞

• Normalized covariance ⇒ Correlation

• Pearson Correlation Coefficient

corr[X, Y ] , cov[X, Y ]√
var[X]var[Y ]

• What is corr[X,X]?

• −1 ≤ corr[X, Y ] ≤ 1

• When is corr[X, Y ] = 1?

– Y = aX + b
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Multivariate Gaussian Distribution

• Most widely used joint probability distribution

N (X|µ,Σ) , 1

(2π)D/2|Σ|1/2 exp
[
−1

2
(x− µ)>Σ−1(x− µ)

]
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