Introduction to Machine Learning

Linear Classifiers - Perceptrons and Logistic Regression

Varun Chandola

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu

Ъ

University at Buffalo Department of Computer Science and Engineering School of Engering and Applied Sciences

Chandola@UB

E 474/574 1

Classification

Linear Classifiers Linear Classification via Hyperplanes

Logistic Regression

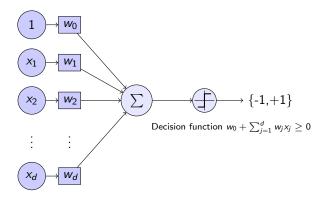
Using Gradient Descent for Learning Weights Using Newton's Method

CSE 474/574 2 / 17

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Target y is categorical
- e.g., $y \in \{-1, +1\}$ (binary classification)
- A possible problem formulation: Learn f such that $y = f(\mathbf{x})$

Linear Classifiers



inputs weights

Decision Rule

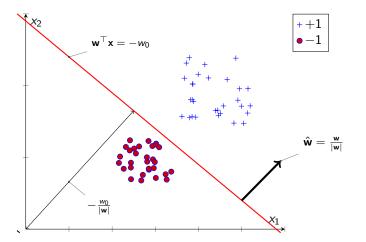
$$y_i = \begin{cases} -1 & \text{if } w_0 + \mathbf{w}^\top \mathbf{x}_i < 0 \\ +1 & \text{if } w_0 + \mathbf{w}^\top \mathbf{x}_i \ge 0 \end{cases}$$

Chandola@UB

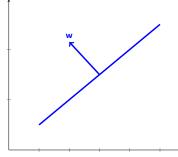
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = ∽0�?

CSE 474/574 4 / 17

Geometric Interpretation



- Separates a *D*-dimensional space into two half-spaces
- ▶ Defined by $\mathbf{w} \in \Re^D$
 - Orthogonal to the hyperplane
 - This w goes through the origin
 - How do you check if a point lies "above" or "below" w?
 - What happens for points on w?



Add a bias w₀

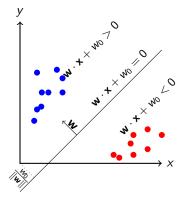
- \blacktriangleright $w_0 > 0$ move along **w**
- $w_0 < 0$ move opposite to **w**
- How to check if point lies above or below w?
 - If $\mathbf{w}^{\top}\mathbf{x} + w_0 > 0$ then \mathbf{x} is above
 - Else, *below*

- Decision boundary represented by the hyperplane w
- For binary classification, w points towards the positive class

Decision Rule

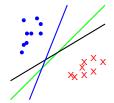
$$y = sign(\mathbf{w}^{\top}\mathbf{x} + w_0)$$

$$\mathbf{w}^{\top}\mathbf{x} + w_0 \ge 0 \Rightarrow y = +1$$
$$\mathbf{w}^{\top}\mathbf{x} + w_0 < 0 \Rightarrow y = -1$$



< □ >	▲ 🗗 🕨 🔺 🖹	▶ ★ 臣 ▶	E
CSE 474/574	8 / 17		

- Find a hyperplane that separates the data
 ... if the data is linearly separable
- But there can be many choices!
- Find the one with lowest error



What is an appropriate loss function?

0-1 Loss

Number of mistakes in training data

$$J(\mathbf{w}) = \min_{\mathbf{w}, w_0} \sum_{i=1}^n \mathbb{I}(y_i(\mathbf{w}^\top \mathbf{x}_i + w_0) < 0)$$

Hard to optimize

Solution - replace it with a mathematically manageable loss

Note

From now on, assuming that intercept and constant terms are included in \mathbf{w} and \mathbf{x}_i , respectively.

Squared Loss - Perceptron

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \mathbf{w}^\top \mathbf{x}_i)^2$$
(1)

Logistic Loss - Logistic Regression

$$J(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \log\left(1 + \exp\left(-y_i \mathbf{w}^\top \mathbf{x}_i\right)\right)$$
(2)

Hinge Loss - Support Vector Machine

$$J(\mathbf{w}) = \sum_{i=1}^{n} \max\left(0, 1 - y_i \mathbf{w}^{\top} \mathbf{x}_i\right)$$
(3)

Chandola@UB

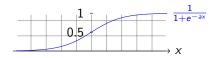
CSE 474/574 11 / 17

Geometric Interpretation

- Use regression to predict discrete values
- Squash output to [0, 1] using sigmoid function
- Output less than 0.5 is one class and greater than 0.5 is the other

Probabilistic Interpretation

Probability of x to belong to class +1



Logistic Loss Function

For one training observation,

• if $y_i = +1$, the probability of the predicted value to be +1

$$p_i = rac{1}{1 + \exp\left(-\mathbf{w}^ op \mathbf{x}_i
ight)}$$

• if $y_i = -1$, the probability of the predicted value to be -1

$$p_i = 1 - \frac{1}{1 + \exp\left(-\mathbf{w}^{\top}\mathbf{x}_i\right)} = \frac{1}{1 + \exp\left(\mathbf{w}^{\top}\mathbf{x}_i\right)}$$

In general

$$p_i = rac{1}{1 + \exp\left(-y_i \mathbf{w}^{ op} \mathbf{x}_i
ight)}$$

For logistic regression, the objective is to minimize the negative of the log probability:

$$J(\mathbf{w}) = -\sum_{i=1}^{n} \log (p_i) = \sum_{i=1}^{n} \log (1 + \exp (-y_i \mathbf{w}^{\top} \mathbf{x}_i))$$

Chandola@UB

・ロト・日本・モート モー うへの

CSE 474/574 13 / 17

- Direct minimization??
 - No closed form solution for minimizing error
- Gradient Descent
- Newton's Method

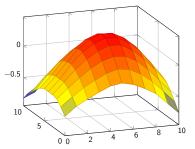
Compute gradient of J(w) with respect to w

A convex function of w with a unique global minima

$$\nabla J(\mathbf{w}) = -\frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{1 + \exp(y_i \mathbf{w}^\top \mathbf{x}_i)} \mathbf{x}_i$$

• Update rule:

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \eta \frac{d}{d\mathbf{w}_k} LL(\mathbf{w}_k)$$



< □ ▶		< ≣ >	12	500
CSE 474/574	15 / 17			

Using Newton's Method

- Setting η is sometimes *tricky*
- Too large incorrect results
- Too small slow convergence
- Another way to speed up convergence:

Newton's Method

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \eta \mathbf{H}_k^{-1} \nabla J(\mathbf{w}_k)$$

Hessian

$$\mathbf{H}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\exp(y_i \mathbf{w}^\top \mathbf{x}_i)}{(1 + \exp(y_i \mathbf{w}^\top \mathbf{x}_i))^2} \mathbf{x}_i \mathbf{x}_i^\top$$

< □ ▶	(1日) (1日) (日)	< ≣ ▶	- 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CSE 474/574	16 / 17			

References