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1 Learning Probabilistic Classifiers

Training data, D = [〈xi, yi〉]Di=1

1. {circular,large,light,smooth,thick}, malignant

2. {circular,large,light,irregular,thick}, malignant

3. {oval,large,dark,smooth,thin}, benign

4. {oval,large,light,irregular,thick}, malignant

5. {circular,small,light,smooth,thick}, benign

• Testing: Predict y∗ for x∗

• Option 1: Functional Approximation

y∗ = f(x∗)

• Option 2: Probabilistic Classifier

P (Y = benign|X = x∗), P (Y = malignant|X = x∗)

Training data, D = [〈xi, yi〉]Di=1

1. {circular,large,light,smooth,thick}, malignant

2. {circular,large,light,irregular,thick}, malignant

3. {oval,large,dark,smooth,thin}, benign

4. {oval,large,light,irregular,thick}, malignant

5. {circular,small,light,smooth,thick}, benign

• x∗ = circular,small, light,irregular,thin

• What is P (Y = benign|x∗)?

• What is P (Y = malignant|x∗)?

Turns out that if we have not observed the training data, then the best prob-
abilistic estimates we can provide is P (Y = benign) = P (Y = malignant) =
0.5. But if we know how many times Y takes each value in a randomly
sampled data set, we can make a better estimate.
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1.1 Treating Output Label Y as a Random Variable

• Y takes two values

• What is p(Y )?

– ∼ Ber(θ)

– How do you estimate θ?

– Treat the labels in training data as binary samples

– Done that last week!

– Posterior for θ

p(θ) =
α0 +N1

α0 + β0 +N

– Class 1 - Malignant; Class 2 - Benign

– Can we just use p(y|θ) for predicting future labels?

∗ Just a prior for Y

1.2 Computing Posterior for Y

• What is probability of x∗ to be malignant

– P (X = x∗|Y = malignant)?

– P (Y = malignant)?

– P (Y = malignant|X = x∗) ?

– P (Y = malignant|X = x∗) = P (X=x∗|Y=malignant)P (Y=malignant)
P (X=x∗|Y=malignant)P (Y=malignant)+P (X=x∗|Y=benign)P (Y=benign)

1.3 Computing Class Conditional Probabilities

• Class conditional probability of random variable X

• Step 1: Assume a probability distribution for X (p(X))

• Step 2: Learn parameters from training data

• But X is multivariate discrete random variable!

• How many parameters are needed?
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• 2(2D − 1)

• How much training data is needed?

Note that the X can take 2D values. That means that the probability dis-
tribution should consist of probability of observing each possibility. Given
that all probabilities sum to 1, we need 2D − 1 probabilities. We need these
probabilities for each value of Y , hence 2(2D − 1) probabilities.

Obviously, to reliably estimate the probabilities, one need to observe each
possible realization of X at least a few times. Which means that we need
large amounts of training data!

2 Naive Bayes Classification

2.1 Naive Bayes Assumption

• All features are independent

• Each variable can be assumed to be a Bernoulli random variable

P (X = x∗|Y = malignant) =
D∏

j=1

P (Xj = x∗j |Y = malignant)

P (X = x∗|Y = benign) =
D∏

j=1

P (Xj = x∗j |Y = benign)

y

x1 x2 x3 x4 x5 x6 xD

• Only need 2D parameters

• Training a Naive Bayes Classifier

• Find parameters that maximize likelihood of training data

– What is a training example?
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∗ xi?

∗ 〈xi, yi〉
– What are the parameters?

∗ θ for Y (class prior)

∗ θbenign and θmalignant (or θ1 and θ2)

– Joint probability distribution of (X, Y )

p(xi, yi) = p(yi|θ)p(xi|yi)
= p(yi|θ)

∏

j

p(xij|θjyi)

2.2 Maximizing Likelihood

• Likelihood for D

l(D|Θ) =
∏

i

(
p(yi|θ)

∏

j

p(xij|θjyi)
)

• Log-likelihood for D

ll(D|Θ) = N1 log θ +N2 log(1− θ)
+

∑

j

N1j log θ1j + (N1 −N1j) log (1− θ1j)

+
∑

j

N2j log θ2j + (N2 −N2j) log (1− θ2j)

• N1 - # malignant training examples, N2 = # benign training examples

• N1j - # malignant training examples with xj = 1, N2j = # benign training exam-
ples with xj = 2

Derivation of the log-likelihood can be done by using the following results.
The summation

∑
i log p(yi|θ) can be expanded and reordered by each class.

For each class, the contribution to the sum will be Ncp(yi|θc) where Nc is
the number of training examples with c as the class label and θc is the class
prior for class c. The double summation

∑
i

∑
j log p(xij|θjyi) is same as∑

j

∑
i log p(xij|θjyi). The inner sum can be expanded and order by each

class. For each class, the contribution to the sum will be
∑

i:yi=c log p(xij|θjc).

5

2.3 Maximum Likelihood Estimates

• Maximize with respect to θ, assuming Y to be Bernoulli

θ̂c =
Nc

N

• Assuming each feature is binary (xj|(y = c) ∼ Bernoulli(θcj), c =
{1, 2})

θ̂cj =
Ncj

Nc

Algorithm 1 Naive Bayes Training for Binary Features
1: Nc = 0, Ncj = 0,∀j
2: for i = 1 : N do
3: c← yi
4: Nc ← Nc + 1
5: for j = 1 : D do
6: if xij = 1 then
7: Ncj ← Ncj + 1
8: end if
9: end for
10: end for
11: θ̂c =

Nc

N , θ̂cj =
Ncj

Nc

12: return b

2.4 Adding Prior

• Add prior to θ and each θcj.

– Beta prior for θ (∼ Beta(a0, b0))

– Beta prior for θcj (∼ Beta(a, b))

Posterior Estimates
p(θ|D) = Beta(N1 + a0, N −N1 + b0)

p(θcj|D) = Beta(Ncj + a,Nc −Ncj + b)
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2.5 Using Naive Bayes Model for Prediction

p(y = c|x∗, D) ∝ p(y = c|D)
∏

j

p(x∗j |y = c,D)

• MLE approach, MAP approach?

• Bayesian approach:

p(y = 1|x, D) ∝
[∫

Ber(y = 1|θ)p(θ|D)dθ)

]

∏

j

[∫
Ber(xj|θcj)p(θcj|D)dθcj

]

θ̄ =
N1 + a0

N + a0 + b0

θ̄cj =
Ncj + a

Nc + a+ b

Obviously, the MLE and MAP approach use the MLE and MAP estimates
of the parameters to compute the above probability.

2.6 Naive Bayes Example

# Shape Size Color Type

1 cir large light malignant
2 cir large light benign
3 cir large light malignant
4 ovl large light benign
5 ovl large dark malignant
6 ovl small dark benign
7 ovl small dark malignant
8 ovl small light benign
9 cir small dark benign
10 cir large dark malignant
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• Test example: x∗ = {cir, small, light}

We can predict a label in three ways. First is to use the MLE for all the
parameters. Second is to use MAP and third is to use the Bayesian averaging
approach. In each, we need to plug in the parameter estimates in:

P (Y = malignant|X = x∗) = θ̂malignant × θ̂malignant,cir × θ̂malignant,small × θ̂malignant,light

P (Y = benign|X = x∗) = θ̂benign × θ̂benign,cir × θ̂benign,small × θ̂benign,light
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