Introduction to Machine Learning

Maximum Margin Methods

Varun Chandola

March 8, 2021

Outline

Contents

1 Training vs. Generalization Error 1
2 Maximum Margin Classifiers 2
2.1 Linear Classification via Hyperplanes 3
2.2 Concept of Margin . 5

3 Support Vector Machines 7
3.1 SVM Learning . 7
3.2 Solving SVM Optimization Problem 8

4 Constrained Optimization and Lagrange Multipliers 8
4.1 Toy SVM Example . 12
4.2 Kahrun-Kuhn-Tucker Conditions 17
4.3 Support Vectors . 17
4.4 Optimization Constraints 19

5 The Bias-Variance Tradeoff 21

1 Training vs. Generalization Error

Training vs. Generalization Error

Difference between training error and generalization error
We can train a model to minimize the training error

- What we really want is a model that can minimize the generalization error
- But we do not have the unseen data to compute the generalization error
- What do we do?

1. Focus on the training error and hope that generalization error is automatically minimized
2. Incorporate some way to hedge (insure) against possible unseen issues

2 Maximum Margin Classifiers

$$
y=\mathbf{w}^{\top} \mathbf{x}+b
$$

- Remember the Perceptron!
- If data is linearly separable
- Perceptron training guarantees learning the decision boundary
- There can be other boundaries
- Depends on initial value for \mathbf{w}
- But what is the best boundary?

2.1 Linear Classification via Hyperplanes
- Separates a D-dimensional space into two half-spaces
- Defined by $\mathbf{w} \in \Re^{D}$
- Orthogonal to the hyperplane
- This w goes through the origin
- How do you check if a point lies "above" or "below" w?
- What happens for points on w?

For a hyperplane that passes through the origin, a point \mathbf{x} will lie above the hyperplane if $\mathbf{w}^{\top} \mathbf{x}>0$ and will lie below the plane if $\mathbf{w}^{\top} \mathbf{x}<0$, otherwise. This can be further understood by understanding that $b f w^{\top} \mathbf{x}$ is essentially equal to $|\mathbf{w}||\mathbf{x}| \cos \theta$, where θ is the angle between \mathbf{w} and \mathbf{x}

- Add a bias b
$-b>0$ - move along \mathbf{w}
$-b<0-$ move opposite to w
- How to check if point lies above or below w?
- If $\mathbf{w}^{\top} \mathbf{x}+b>0$ then \mathbf{x} is above
- Else, below
- Decision boundary represented by the hyperplane w
- For binary classification, w points towards the positive class

Decision Rule

$$
y=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)
$$

- $\mathbf{w}^{\top} \mathbf{x}+b>0 \Rightarrow y=+1$
- $\mathbf{w}^{\top} \mathbf{x}+b<0 \Rightarrow y=-1$
- Perceptron can find a hyperplane that separates the data
- ... if the data is linearly separable
- But there can be many choices!
- Find the one with best separability (largest margin)
- Gives better generalization performance

1. Intuitive reason
2. Theoretical foundations

2.2 Concept of Margin

- The Geometric Margin is the distance between an example and the decision line
- Denoted by γ
- For a positive point:

$$
\gamma=\frac{\mathbf{w}^{\top} \mathbf{x}+b}{\|\mathbf{w}\|}
$$

- For a negative point:

$$
\gamma=-\frac{\mathbf{w}^{\top} \mathbf{x}+b}{\|\mathbf{w}\|}
$$

- In general:

$$
\gamma=y \frac{\mathbf{w}^{\top} \mathbf{x}+b}{\|\mathbf{w}\|}
$$

To understand the margin from a geometric perspective, consider the projection of the vector connecting the origin to a point \mathbf{x} on the decision line. Let the point be denoted as \mathbf{x}^{\prime}. Obviously the vector \mathbf{r} connecting \mathbf{x}^{\prime} and \mathbf{x} is given by:

$$
\mathbf{r}=\gamma \widehat{\mathbf{w}}=\gamma \frac{\mathbf{w}}{\|\mathbf{w}\|}
$$

if \mathbf{x} lies on the positive side of \mathbf{w}. But the same vector can be computed as:

$$
\mathrm{r}=\mathrm{x}-\mathrm{x}^{\prime}
$$

Equating above two gives us \mathbf{x}^{\prime} as:

$$
\mathbf{x}^{\prime}=\mathbf{x}-\gamma \frac{\mathbf{w}}{\|\mathbf{w}\|}
$$

Noting that, since x^{\prime} lies on the hyperplane and hence:

$$
\mathbf{w}^{\top} \mathbf{x}^{\prime}+b=0
$$

Substituting x^{\prime} from above:

$$
\mathbf{w}^{\top} \mathbf{x}-\gamma \frac{\mathbf{w}^{\top} \mathbf{w}}{\|\mathbf{w}\|}+b=0
$$

Noting that $\frac{\mathbf{w}^{\top} \mathbf{w}}{\|\mathbf{w}\|}=\|\mathbf{w}\|$, we get γ as:

$$
\begin{equation*}
\gamma=\frac{\mathbf{w}^{\top} \mathbf{x}+b}{\|\mathbf{w}\|} \tag{1}
\end{equation*}
$$

Similar analysis can be done for points on the negative side of \mathbf{x}. In general, one can write the expression for the margin as:

$$
\begin{equation*}
\gamma=y \frac{\mathbf{w}^{\top} \mathbf{x}+b}{\|\mathbf{w}\|} \tag{2}
\end{equation*}
$$

where $y \in\{-1,+1\}$.

Functional Interpretation

- Margin positive if prediction is correct; negative if prediction is incorrect

Margin for a given line

- Geometric margin of a line $\mathbf{w}^{\top} \mathbf{x}+b$, with respect to a given data set is the smallest of the geometric margins over all examples:

$$
\gamma=\underset{i=1 \ldots n}{\arg \min } \quad \gamma_{i}
$$

- Consider the line parallel to the decision boundary that passes through the nearest training example
- Assuming that the nearest example is positive, this line will be called the positive margin
- A similar line on the other side of the decision boundary is called the negative margin
- We can rescale the weights, \mathbf{w} and bias term b such that the equations of the positive and negative margins is given by:

$$
\mathbf{w}^{\top} \mathbf{x}+b=+1
$$

,and

$$
\mathbf{w}^{\top} \mathbf{x}+b=-1
$$

From the figure one can note that the size of the margin is $\frac{2}{\|w\|}$. We can show this as follows. Since the data is separable, we can get two parallel lines represented by $\mathbf{w}^{\top} \mathbf{x}+b=+1$ and $\mathbf{w}^{\top} \mathbf{x}+b=-1$. Using result from (1) and (2), the distance between the two lines is given by $2 \gamma=\frac{2}{\|\mathbf{w}\|}$.

3 Support Vector Machines

- A hyperplane based classifier defined by \mathbf{w} and b
- Like perceptron
- Find hyperplane with maximum separation margin on the training data
- Assume that data is linearly separable (will relax this later)
- Zero training error (loss)

SVM Prediction Rule

$$
y=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}+b\right)
$$

SVM Learning

- Input: Training data $\left\{\left(\mathbf{x}_{1}, y_{1}\right),\left(\mathbf{x}_{2}, y_{2}\right), \ldots,\left(\mathbf{x}_{N}, y_{N}\right)\right\}$
- Objective: Learn \mathbf{w} and b that maximizes the margin

3.1 SVM Learning

- SVM learning task as an optimization problem
- Find \mathbf{w} and b that gives zero training error
- Maximizes the margin $\left(=\frac{2}{\|\mathbf{w}\|}\right)$
- Same as minimizing $\|\mathbf{w}\|$

Optimization Formulation

$$
\begin{array}{ll}
\underset{\mathbf{w}, b}{\operatorname{minimize}} & \frac{\|\mathbf{w}\|^{2}}{2} \\
\text { subject to } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1, i=1, \ldots, N .
\end{array}
$$

- Optimization with N linear inequality constraints
3.2 Solving SVM Optimization Problem

Optimization Formulation

$$
\begin{aligned}
\underset{\mathbf{w}, b}{\operatorname{minimize}} & \frac{\|\mathbf{w}\|^{2}}{2} \\
\text { subject to } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1, i=1, \ldots, N . \\
\underset{\mathbf{w}, b}{\operatorname{minimize}} & \frac{\|\mathbf{w}\|^{2}}{2} \\
\text { subject to } & 1-\left[y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right] \leq 0, i=1, \ldots, N .
\end{aligned}
$$

or

- There is an quadratic objective function to minimize with N inequality constraints
- "Off-the-shelf" packages - quadprog (MATLAB), CVXOPT
- Is that the best way?

4 Constrained Optimization and Lagrange Multipliers

$$
\underset{x, y}{\operatorname{minimize}} f(x, y)=x^{2}+2 y^{2}-2
$$

$$
\begin{array}{ll}
\underset{x, y}{\operatorname{minimize}} & f(x, y)=x^{2}+2 y^{2}-2 \\
\text { subject to } & h(x, y)=x+y-1=0
\end{array}
$$

- Method for solving constrained optimization problems of differentiable functions

$$
\begin{array}{ll}
\underset{x, y}{\operatorname{minimize}} & f(x, y)=x^{2}+2 y^{2}-2 \\
\text { subject to } & h(x, y): \quad x+y-1=0
\end{array}
$$

- A Lagrange multiplier (β) lets you combine the two equations into one

$$
\underset{x, y, \beta}{\operatorname{minimize}} L(x, y, \beta)=f(x, y)+\beta h(x, y)
$$

Solution 1. Writing the objective as Lagrangian.

$$
L(x, y, \beta)=x^{2}+2 y^{2}-2+\beta(x+y-1)
$$

Setting the gradient to 0 with respect to x, y and β will give us the optimal values.

$$
\begin{gathered}
\frac{\partial L}{\partial x}=2 x+\beta=0 \\
\frac{\partial L}{\partial y}=4 y+\beta=0 \\
\frac{\partial L}{\partial \beta}=x+y-1=0
\end{gathered}
$$

Multiple Constraints

$$
\begin{array}{lrr}
\hline \underset{x, y, z}{\operatorname{minimize}} & f(x, y, z)= & x^{2}+4 y^{2}+2 z^{2}+6 y+z \\
\text { subject to } & h_{1}(x, y, z): & x+z^{2}-1=0 \\
& h_{2}(x, y, z): & x^{2}+y^{2}-1=0 .
\end{array}
$$

$$
L(x, y, z, \boldsymbol{\beta})=f(x, y, z)+\sum_{i} \beta_{i} h_{i}(x, y, z)
$$

Handling Inequality Constraints

$\underset{x, y}{\operatorname{minimize}}$	$f(x, y)=$	$x^{3}+y^{2}$
subject to	$g(x):$	$x^{2}-1 \leq 0$.

- Inequality constraints are transferred as constraints on the generalized Lagrangian, using the multiplier, α
- Technically, α is a Kahrun-Kuhn-Tucker (KKT) multiplier
- Lagrangian formulation is a special case of KKT formulation with no inequality constraints

Generalized Lagrangian

$$
L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})=f(\boldsymbol{w})+\sum_{i=1}^{k} \alpha_{i} g_{i}(\mathbf{w})
$$

subject to, $\alpha_{i} \geq 0, \forall i$
The Lagrangian in the above example becomes

$$
\begin{aligned}
L(x, y, \alpha) & =f(x, y)+\alpha g(x, y) \\
& =x^{3}+y^{2}+\alpha\left(x^{2}-1\right)
\end{aligned}
$$

Solving for the gradient of the Lagrangian gives us:

$$
\begin{aligned}
\frac{\partial}{\partial x} L(x, y, \alpha)=3 x^{2}+2 \alpha x & =0 \\
\frac{\partial}{\partial y} L(x, y, \alpha)=2 y & =0 \\
\frac{\partial}{\partial \alpha_{1}} L(x, y, \alpha)=x^{2}-1 & =0
\end{aligned}
$$

Furthermore we require that

$$
\alpha \geq 0
$$

From above equations we get $y=0, x= \pm 1$ and $\alpha= \pm \frac{3}{2}$. But since $\alpha \geq 0$, hence $\alpha=\frac{3}{2}$. This gives $x=1, y=0$, and $f=1$.

Handling Both Types of Constraints

$$
\begin{array}{lrl}
\underset{\mathbf{w}}{\operatorname{minimize}} & f(\mathbf{w}) & \\
\text { subject to } & g_{i}(\mathbf{w}) \leq 0 & i=1, \ldots, k \\
\text { and } & h_{i}(\mathbf{w})=0 & i=1, \ldots, l . \\
\hline
\end{array}
$$

Generalized Lagrangian

$$
L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})=f(\boldsymbol{w})+\sum_{i=1}^{k} \alpha_{i} g_{i}(\mathbf{w})+\sum_{i=1}^{l} \beta_{i} h_{i}(\mathbf{w})
$$

subject to, $\alpha_{i} \geq 0, \forall i$

Karush-Kuhn-Tucker (KKT) Conditions

- A set of conditions that are necessary for a solution (\mathbf{w}^{*}) to be optimal
- The are necessary conditions, but not always sufficient
- In some cases they are sufficient (SVMs being one of them)
- Stationarity:

$$
\nabla L\left(\mathbf{w}^{*}\right)=\nabla\left(\mathbf{w}^{*}\right)+\nabla \sum_{i=1}^{k} \alpha_{i} g_{i}\left(\mathbf{w}^{*}\right)+\nabla \sum_{i=1}^{l} \beta_{i} h_{i}\left(\mathbf{w}^{*}\right)=\mathbf{0}
$$

- Primal feasibility:

$$
\begin{aligned}
g_{i}\left(\mathbf{w}^{*}\right) & \leq 0, \forall i \\
h_{i}\left(\mathbf{w}^{*}\right) & =0, \forall i
\end{aligned}
$$

- Dual feasibility:

$$
\alpha_{i} \geq 0, \forall i
$$

- Complementary slackness

$$
\sum_{i=1}^{k} \alpha_{i} g_{i}\left(\mathbf{w}^{*}\right)=0
$$

Optimization Formulation

$\underset{\mathbf{w}, b}{\operatorname{minimize}} \frac{\|\mathbf{w}\|^{2}}{2}$
subject to $1-\left[y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right] \leq 0, i=1, \ldots, N$
A Toy Example

- $\mathrm{x} \in \Re^{2}$
- Two training points:

$$
\begin{aligned}
& \mathbf{x}_{1}, y_{1}=(1,1),-1 \\
& \mathbf{x}_{2}, y_{2}=(2,2),+1
\end{aligned}
$$

- Find the best hyperplane $\mathbf{w}=\left(w_{1}, w_{2}\right)$

4.1 Toy SVM Example

Optimization problem for a toy example

$$
\begin{array}{lrr}
\underset{\mathbf{w}}{\operatorname{minimize}} & f(\mathbf{w})= & \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { subject to } & g_{1}(\mathbf{w}, b)= & 1-y_{1}\left(\mathbf{w}^{\top} \mathbf{x}_{1}+b\right) \leq 0 \\
& g_{2}(\mathbf{w}, b)= & 1-y_{2}\left(\mathbf{w}^{\top} \mathbf{x}_{2}+b\right) \leq 0
\end{array}
$$

- Substituting actual values for \mathbf{x}_{1}, y_{1} and \mathbf{x}_{2}, y_{2}

$\underset{\mathbf{w}}{\operatorname{minimize}}$	$f(\mathbf{w})=$	$\frac{1}{2}\\|\mathbf{w}\\|^{2}$
subject to	$g_{1}(\mathbf{w}, b)=$	$1+\left(\mathbf{w}^{\top} \mathbf{x}_{1}+b\right) \leq 0$
	$g_{2}(\mathbf{w}, b)=$	$1-\left(\mathbf{w}^{\top} \mathbf{x}_{2}+b\right) \leq 0$.

The above problem can be also written as:

$$
\begin{array}{lrl}
\hline \underset{w_{1}, w_{2}, b}{\operatorname{minimize}} & f\left(w_{1}, w_{2}\right) & = \\
\text { subject to } & g_{1}\left(w_{1}, w_{2}, b\right) & = \\
& g_{2}\left(w_{1}, w_{2}, b\right) & =1+\left(w_{1}^{2}+w_{2}^{2}\right) \\
\hline
\end{array}
$$

To solve the toy optimization problem, we rewrite it in the Lagrangian form:
$L\left(w_{1}, w_{2}, b, \alpha\right)=\frac{1}{2}\left(w_{1}^{2}+w_{2}^{2}\right)+\alpha_{1}\left(1+w_{1}+w_{2}+b\right)+\alpha_{2}\left(1-\left(2 w_{1}+2 w_{2}+b\right)\right)$
Setting $\nabla L=0$, we get:

$$
\begin{aligned}
\frac{\partial}{\partial w_{1}} L\left(w_{1}, w_{2}, b, \alpha\right) & =w_{1}+\alpha_{1}-2 \alpha_{2}=0 \\
\frac{\partial}{\partial w_{2}} L\left(w_{1}, w_{2}, b, \alpha\right) & =w_{2}+\alpha_{1}-2 \alpha_{2}=0 \\
\frac{\partial}{\partial b} L\left(w_{1}, w_{2}, b, \alpha\right) & =\alpha_{1}-\alpha_{2}=0 \\
\frac{\partial}{\partial \alpha_{1}} L\left(w_{1}, w_{2}, b, \alpha\right) & =w_{1}+w_{2}+b+1=0 \\
\frac{\partial}{\partial \alpha_{2}} L\left(w_{1}, w_{2}, b, \alpha\right) & =2 w_{1}+2 w_{2}+b-1=0
\end{aligned}
$$

Solving the above equations, we get, $w_{1}=w_{2}=1$ and $b=-3$.

Primal and Dual Formulations

Generalized Lagrangian

$$
L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})=f(\boldsymbol{w})+\sum_{i=1}^{k} \alpha_{i} g_{i}(\mathbf{w})+\sum_{i=1}^{l} \beta_{i} h_{i}(\mathbf{w})
$$

subject to, $\alpha_{i} \geq 0, \forall i$

Primal Optimization

- Let θ_{P} be defined as:

$$
\theta_{P}(\mathbf{w})=\max _{\alpha, \beta, \alpha_{i} \geq 0} L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

- One can prove that the optimal value for the original constrained problem is same as:

$$
p^{*}=\min _{\mathbf{w}} \theta_{P}(\mathbf{w})=\min _{\mathbf{w}} \max _{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

Consider

$$
\begin{aligned}
\theta_{P}(\mathbf{w}) & =\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \\
& =\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} f(\mathbf{w})+\sum_{i=1}^{k} \alpha_{i} g_{i}(\mathbf{w})+\sum_{i=1}^{l} \beta_{i} h_{i}(\mathbf{w})
\end{aligned}
$$

It is easy to show that if any constraints are not satisfied, i.e., if either $g_{i}(\mathbf{w})>0$ or $h_{i}(\mathbf{w}) \neq 0$, then $\theta_{P}(\mathbf{w})=\infty$. Which means that:

$$
\theta_{P}(\mathbf{w})= \begin{cases}f(\mathbf{w}) & \text { if primal constraints are satisfied } \\ \infty & \text { otherwise }\end{cases}
$$

Primal and Dual Formulations (II)

Dual Optimization

- Consider θ_{D}, defined as

$$
\theta_{D}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\min _{\mathbf{w}} L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

- The dual optimization problem can be posed as:

$$
d^{*}=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta}: \alpha_{i} \geq 0} \theta_{D}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\max _{\boldsymbol{\alpha}, \boldsymbol{\beta} \cdot \alpha_{i} \geq 0} \min _{\mathbf{w}} L(\mathbf{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})
$$

$$
d^{*}==p^{*} ?
$$

- Note that $d^{*} \leq p^{*}$
- "Max min" of a function is always less than or equal to "Min max"
- When will they be equal?
- $f(\mathbf{w})$ is convex
- Constraints are affine
- $\exists \mathbf{w}$, s.t., $g_{i}(\mathbf{w})<0, \forall i$
- For SVM optimization the equality holds

Kahrun-Kuhn-Tucker (KKT) Conditions

- First derivative tests to check if a solution for a non-linear optimization problem is optimal
- For $d^{*}=p^{*}=L\left(\mathbf{w}^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right)$:

$$
\begin{array}{rll}
\frac{\partial}{\partial \mathbf{w}} L\left(\mathbf{w}^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right) & =0 \\
\frac{\partial}{\partial \beta_{i}} L\left(\mathbf{w}^{*}, \boldsymbol{\alpha}^{*}, \boldsymbol{\beta}^{*}\right) & =0, & i=1, \ldots, l \\
\alpha_{i}^{*} g_{i}\left(\mathbf{w}^{*}\right) & =0, & i=1, \ldots, k \\
g_{i}\left(\mathbf{w}^{*}\right) & \leq 0, & i=1, \ldots, k \\
\alpha_{i}^{*} & \geq 0, & i=1, \ldots, k
\end{array}
$$

Back to SVM Optimization

Optimization Formulation

$$
\begin{array}{ll}
\underset{\mathbf{w}, b}{\operatorname{minimize}} & \frac{\|\mathbf{w}\|^{2}}{2} \\
\text { subject to } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1, i=1, \ldots, N .
\end{array}
$$

- Introducing Lagrange Multipliers, $\alpha_{i}, i=1, \ldots, N$

Rewriting as a (primal) Lagrangian

$$
\underset{\mathbf{w}, b, \boldsymbol{\alpha}}{\operatorname{minimize}} \quad L_{P}(\mathbf{w}, b, \boldsymbol{\alpha})=\frac{\|\mathbf{w}\|^{2}}{2}+\sum_{i=1}^{N} \alpha_{i}\left\{1-y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right)\right\}
$$

$$
\text { subject to } \quad \alpha_{i} \geq 0 i=1, \ldots, N .
$$

Solving the Lagrangian

- Set gradient of L_{P} to 0

$$
\begin{aligned}
\frac{\partial L_{P}}{\partial \mathbf{w}} & =0 \Rightarrow \mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i} \\
\frac{\partial L_{P}}{\partial b} & =0 \Rightarrow \sum_{i=1}^{N} \alpha_{i} y_{i}=0
\end{aligned}
$$

15

- Substituting in L_{P} to get the dual L_{D}

Dual Lagrangian Formulation

$$
\begin{array}{ll}
\underset{b, \boldsymbol{\alpha}}{\operatorname{maximize}} & L_{D}(\boldsymbol{\alpha})=\sum_{i=1}^{N} \alpha_{i}-\frac{1}{2} \sum_{m, n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n}\left(\mathbf{x}_{m}^{\top} \mathbf{x}_{n}\right) \\
\text { subject to } & \sum_{i=1}^{N} \alpha_{i} y_{i}=0, \alpha_{i} \geq 0 i=1, \ldots, N .
\end{array}
$$

- Dual Lagrangian is a quadratic programming problem in α_{i} 's
- Use "off-the-shelf" solvers
- Having found α_{i} 's

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

- What will be the bias term b ?

$$
b=-\frac{\max _{n: y_{i}=-1} \mathbf{w}^{\top} \mathbf{x}_{i}+\min _{n: y_{i}=1} \mathbf{w}^{\top} \mathbf{x}_{i}}{2}
$$

- We are skipping the proof for this part

Investigating Kahrun Kuhn Tucker Conditions

- For the primal and dual formulations
- We can optimize the dual formulation (as shown earlier)
- Solution should satisfy the Karush-Kuhn-Tucker (KKT) Conditions
4.2 Kahrun-Kuhn-Tucker Conditions

$$
\begin{align*}
\frac{\partial}{\partial \mathbf{w}} L_{P}(\mathbf{w}, b, \alpha) & =\mathbf{w}-\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}=0 \tag{1}\\
\frac{\partial}{\partial b} L_{P}(\mathbf{w}, b, \alpha) & =-\sum_{i=1}^{N} \alpha_{i} y_{i}=0 \tag{2}\\
1-y_{i}\left\{\mathbf{w}^{\top} \mathbf{x}_{i}+b\right\} & \leq 0 \tag{3}\\
\alpha_{i} & \geq 0 \tag{4}\\
\alpha_{i}\left(1-y_{i}\left\{\mathbf{w}^{\top} \mathbf{x}_{i}+b\right\}\right) & =0 \tag{5}
\end{align*}
$$

4.3 Support Vectors

Most α_{i} 's are 0

- KKT condition \#5:

$$
\alpha_{i}\left(1-y_{i}\left\{\mathbf{w}^{\top} \mathbf{x}_{i}+b\right\}\right)=0
$$

- If \mathbf{x}_{i} not on margin

$$
\begin{gathered}
y_{i}\left\{\mathbf{w}^{\top} \mathbf{x}_{i}+b\right\}>1 \\
\alpha_{i}=0
\end{gathered}
$$

- $\alpha_{i} \neq 0$ only for \mathbf{x}_{i} on margin
- These are the support vectors
- Only need these for prediction

that:
One can see from the prediction equation

$$
y^{*}=\operatorname{sign}\left(\sum_{i=1}^{N} \alpha_{i} y_{i}\left(\mathbf{x}_{i}^{\top} \mathbf{x}^{*}\right)\right)
$$

In the summation, the entries for \mathbf{x}_{i} that do not lie on the margin will have no contribution to the sum because α_{i} for those \mathbf{x}_{i} 's will be 0 . Hence we only need to the non-zero input examples to get the prediction.

- Cannot go for zero training error
- Still learn a maximum margin hyperplane

1. Allow some examples to be misclassified
2. Allow some examples to fall inside the margin

- How do you set up the optimization for SVM training

Introducing Slack Variables

- Separable Case: To ensure zero training loss, constraint was

$$
y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1 \quad \forall i=1 \ldots N
$$

- Non-separable Case: Relax the constraint

$$
y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i} \quad \forall i=1 \ldots N
$$

- ξ_{i} is called slack variable $\left(\xi_{i} \geq 0\right)$
- For misclassification, $\xi_{i}>1$

4.4 Optimization Constraints

- It is OK to have some misclassified training examples
- Some ξ_{i} 's will be non-zero
- Minimize the number of such examples
- Minimize

- Optimization Problem for Non-Separable Case

$$
\begin{array}{ll}
\underset{\mathbf{w}, b}{\operatorname{minimize}} & L(\mathbf{w}, b)=\|\mathbf{w}\|^{2}+C \sum_{i=1}^{N} \xi_{i} \\
\text { subject to } & y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+b\right) \geq 1-\xi_{i}, \xi_{i} \geq 0 i=1, \ldots, N
\end{array}
$$

- Similar optimization procedure as for the separable case (QP for the dual)
- Weights have the same expression

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

- Support vectors are slightly different

1. Points on the margin $\left(\xi_{i}=0\right)$
2. Inside the margin but on the correct side $\left(0<\xi_{i}<1\right)$
3. On the wrong side of the hyperplane $\left(\xi_{i} \geq 1\right)$

It is straightforward to see why the support vectors also includes points that are on the wrong side of the margin. The KKT condition \#5, in this case will be:

$$
\alpha_{i}\left(1-\xi_{i}-y_{i}\left\{\mathbf{w}^{\top} \mathbf{x}_{i}+b\right\}\right)=0
$$

For any point that is not on the margin, but is on the correct side of the margin, ξ_{i} will be 0 , and $y_{i}\left\{\mathbf{w}^{\top} \mathbf{x}_{i}+b>1\right.$. Thus to satisfy the above condition, α_{i} will be 0 . However, for the points on the margin, both ξ_{i} and $y_{i}\left\{\mathbf{w}^{\top} \mathbf{x}_{i}+b\right.$ will be 0 , thus, α_{i} will be non-zero. Finally, for the points that are on the wrong side of the margin, ξ_{i} will be equal to $1-\left\{y_{i}\left\{\mathbf{w}^{\top} \mathbf{x}_{i}+b\right\}\right.$, because that is how the slack is defined. Thus, α_{i} will have to be non-zero to satisfy the condition.

- C dictates if we focus more on maximizing the margin or reducing the training error.
- Controls the bias-variance tradeoff

5 The Bias-Variance Tradeoff

- C allows the model to be a mule or a sheep or something in between
- Question: What do you want the model to be?
- Training time for SVM training is $O\left(N^{3}\right)$
- Many faster but approximate approaches exist
- Approximate QP solvers
- Online training
- SVMs can be extended in different ways

1. Non-linear boundaries (kernel trick)
2. Multi-class classification
3. Probabilistic output
4. Regression (Support Vector Regression)

References

