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1 Classification

Supervised Learning - Classification

• Target y is categorical

• e.g., y ∈ {−1,+1} (binary classification)

• A possible problem formulation: Learn f such that y = f(x)

2 Linear Classifiers

Linear Classifiers

Decision function w0 +
∑d

j=1 wjxj ≥
0

{-1,+1}∑
w2x2

...
...

wdxd

w1x1

w01

inputs weights

Decision Rule

yi =

{
−1 if w0 + w>xi < 0
+1 if w0 + w>xi ≥ 0

Geometric Interpretation

w>x = −w0

ŵ = w
|w|

− w0
|w| x1

x2 +1
−1

2.1 Linear Classification via Hyperplanes

• Separates a D-dimensional space into two half-spaces

• Defined by w ∈ <D
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w

– Orthogonal to the hyperplane

– This w goes through the origin

– How do you check if a point lies “above” or “below” w?

– What happens for points on w?

For a hyperplane that passes through the origin, a point x will lie above the
hyperplane if w>x > 0 and will lie below the plane if w>x < 0, otherwise.
This can be further understood by understanding that bfw>x is essentially
equal to |w||x| cos θ, where θ is the angle between w and x.

• Add a bias w0

– w0 > 0 - move along w

– w0 < 0 - move opposite to w

• How to check if point lies above or below w?

– If w>x + w0 > 0 then x is above

– Else, below

• Decision boundary represented by the hyperplane w

• For binary classification, w points towards the positive class

Decision Rule
y = sign(w>x + w0)

• w>x + w0 ≥ 0⇒ y = +1
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• w>x + w0 < 0⇒ y = −1

• Find a hyperplane that separates the data

– . . . if the data is linearly separable

• But there can be many choices!

• Find the one with lowest error

Learning w

• What is an appropriate loss function?

0-1 Loss

• Number of mistakes in training data

J(w) = min
w,w0

n∑

i=1

I(yi(w>xi + w0) < 0)
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• Hard to optimize

• Solution - replace it with a mathematically manageable loss

Different Loss Functions

Note
From now on, assuming that intercept and constant terms are included in w
and xi, respectively.

• Squared Loss - Perceptron

J(w) =
1

2

n∑

i=1

(yi −w>xi)
2 (1)

• Logistic Loss - Logistic Regression

J(w) =
1

n

n∑

i=1

log (1 + exp (−yiw>xi)) (2)

• Hinge Loss - Support Vector Machine

J(w) =
n∑

i=1

max (0, 1− yiw>xi) (3)

3 Logistic Regression

Geometric Interpretation

• Use regression to predict discrete values

• Squash output to [0, 1] using sigmoid function

• Output less than 0.5 is one class and greater than 0.5 is the other

Probabilistic Interpretation

• Probability of x to belong to class +1
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Logistic Loss Function

• For one training observation,

– if yi = +1, the probability of the predicted value to be +1

pi =
1

1 + exp (−w>xi)

– if yi = −1, the probability of the predicted value to be -1

pi = 1− 1

1 + exp (−w>xi)
=

1

1 + exp (w>xi)

– In general

pi =
1

1 + exp (−yiw>xi)

• For logistic regression, the objective is to minimize the negative of the
log probability:

J(w) = −
n∑

i=1

log (pi) =
n∑

i=1

log (1 + exp (−yiw>xi))

Learning Logistic Regression Model

• Direct minimization??

– No closed form solution for minimizing error

• Gradient Descent

• Newton’s Method

To understand why there is no closed form solution for maximizing the log-
likelihood, we first differentiate J(w) with respect to w.

∇J(w) =

d

dw
J(w) =

n∑

i=1

log(1 + exp (−yiw>xi))

= − 1

n

n∑

i=1

yi
1 + exp (yiw>xi)

xi

Obviously, given that ∇J(w) is a non-linear function of w, a closed form
solution is not possible.
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3.1 Using Gradient Descent for Learning Weights

• Compute gradient of J(w) with respect to w

• A convex function of w with a unique global minima

∇J(w) = − 1

n

n∑

i=1

yi
1 + exp (yiw>xi)

xi

• Update rule:

wk+1 = wk − η
d

dwk

LL(wk)
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3.2 Using Newton’s Method

• Setting η is sometimes tricky

• Too large – incorrect results

• Too small – slow convergence

• Another way to speed up convergence:

Newton’s Method
wk+1 = wk − ηH−1k ∇J(wk)

Hessian

H(w) =
1

n

n∑

i=1

exp (yiw
>xi)

(1 + exp (yiw>xi))2
xix

>
i
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