Introduction to Machine Learning

Linear Classifiers - Perceptrons and Logistic Regression
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1 Classification
Supervised Learning - Classification

e Target y is categorical

o cg.,y e {—1,+1} (binary classification)

e A possible problem formulation: Learn f such that y = f(x)
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2 Linear Classifiers

Linear Classifiers
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2.1 Linear Classification via Hyperplanes

e Separates a D-dimensional space into two half-spaces

e Defined by w € RP




— Orthogonal to the hyperplane
— This w goes through the origin
— How do you check if a point lies “above” or “below” w?

— What happens for points on w?

For a hyperplane that passes through the origin, a point x will lie above the
hyperplane if w'x > 0 and will lie below the plane if w'x < 0, otherwise.
This can be further understood by understanding that bfw'x is essentially
equal to |w||x]|cosf, where § is the angle between w and x.

ew'x+wy<0=y=-1

o Add a bias w, e Find a hyperplane that separates the data

— ... if the data is linearly separable
— wp > 0 - move along w

But there can be many choices!

— wy < 0 - move opposite to w

e How to check if point lies above or below w? Find the one with lowest error

— If w'x +wy > 0 then x is above

— Else, below Learning w
e Decision boundary represented by the hyperplane w e What is an appropriate loss function?
e For binary classification, w points towards the positive class 0-1 Loss

Decision Rule e Number of mistakes in training data

y = sign(w'x + wp)

J(W) = min T(y:(w ' x; +wp) < 0
e wix+wy>0=y=+1 (w) W,wa; (wi( 0) )
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e Hard to optimize

e Solution - replace it with a mathematically manageable loss

Different Loss Functions

Note
From now on, assuming that intercept and constant terms are included in w
and x;, respectively.

e Squared Loss - Perceptron

i=1

e Logistic Loss - Logistic Regression
1 n
J(w) = - Zlog (1 + exp (—yw ' x;)) (2)
i=1
e Hinge Loss - Support Vector Machine

J(w) = Z max (0,1 — y;w' x;) (3)
i=1

3 Logistic Regression

Geometric Interpretation
e Use regression to predict discrete values
e Squash output to [0, 1] using sigmoid function

e Output less than 0.5 is one class and greater than 0.5 is the other

Probabilistic Interpretation

e Probability of x to belong to class +1

wt

Logistic Loss Function
o For one training observation,
— if y; = +1, the probability of the predicted value to be +1

1

pi=—

=Ty exp (—w'x;)

— if y; = —1, the probability of the predicted value to be -1
1 1

1— =
l+exp(—w'x;) 1+exp(w'x;)

pi =

— In general

1

pi=q +exp (—y;w'x;)

o For logistic regression, the objective is to minimize the negative of the
log probability:

n n
J(w) =— Z log (pi) = Z log (1 + exp (—yiw ' x;))
i=1 i=1
Learning Logistic Regression Model
e Direct minimization??
— No closed form solution for minimizing error
o Gradient Descent

e Newton’s Method

To understand why there is no closed form solution for maximizing the log-
likelihood, we first differentiate J(w) with respect to w.
Vi(w) =
d

—J(w)

T Z log(1 + exp (—y:w ' x;))

i=1

1 n yl

n < 1+ exp (yiw'x;)
Obviously, given that V.J(w) is a non-linear function of w, a closed form
solution is not possible.




3.1 Using Gradient Descent for Learning Weights
e Compute gradient of J(w) with respect to w

e A convex function of w with a unique global minima

n

_ 1 Yi
vIw) = n Z 1+ exp (yinxi)xl

i=1

e Update rule:

d
Wil = Wy — UMLL(WA-)

3.2 Using Newton’s Method
o Setting n is sometimes tricky
e Too large — incorrect results
e Too small — slow convergence

e Another way to speed up convergence:

Newton’s Method
Wi = wy, — H,'V.J(wy)
Hessian .
1 n i :
Hw) =~ (C"p(?f#xix;

n = (1+exp (yiwx;))
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