Introduction to Machine Learning
Linear Classifiers - Perceptrons and Logistic Regression

Varun Chandola

March 8, 2021

Outline

Contents

1 Classification 1
2 Linear Classifiers 2
2.1 Linear Classification via Hyperplanes 2

3 Logistic Regression 5
3.1 Using Gradient Descent for Learning Weights 7
3.2 Using Newton's Method . 7

1 Classification

Supervised Learning - Classification

- Target y is categorical
- e.g., $y \in\{-1,+1\}$ (binary classification)
- A possible problem formulation: Learn f such that $y=f(\mathbf{x}$

2 Linear Classifiers
Linear Classifiers
(x)

$$
-\sqrt{w_{d}}
$$

Decision Rule

$$
y_{i}= \begin{cases}-1 & \text { if } w_{0}+\mathbf{w}^{\top} \mathbf{x}_{i}<0 \\ +1 & \text { if } w_{0}+\mathbf{w}^{\top} \mathbf{x}_{i} \geq 0\end{cases}
$$

Geometric Interpretation

2.1 Linear Classification via Hyperplanes

- Separates a D-dimensional space into two half-spaces
- Defined by $\mathbf{w} \in \Re^{D}$

- Orthogonal to the hyperplane
- This w goes through the origin
- How do you check if a point lies "above" or "below" w?
- What happens for points on \mathbf{w} ?

For a hyperplane that passes through the origin, a point \mathbf{x} will lie above the hyperplane if $\mathbf{w}^{\top} \mathbf{x}>0$ and will lie below the plane if $\mathbf{w}^{\top} \mathbf{x}<0$, otherwise. This can be further understood by understanding that $b f w^{\top} \mathbf{x}$ is essentially equal to $|\mathbf{w}||\mathbf{x}| \cos \theta$, where θ is the angle between \mathbf{w} and \mathbf{x}.

- Add a bias w_{0}
$-w_{0}>0-$ move along \mathbf{w}
$-w_{0}<0$ - move opposite to \mathbf{w}
- How to check if point lies above or below \mathbf{w} ?
- If $\mathbf{w}^{\top} \mathbf{x}+w_{0}>0$ then \mathbf{x} is above
- Else, below
- Decision boundary represented by the hyperplane w
- For binary classification, w points towards the positive class

Decision Rule

$$
y=\operatorname{sign}\left(\mathbf{w}^{\top} \mathbf{x}+w_{0}\right)
$$

- $\mathbf{w}^{\top} \mathbf{x}+w_{0} \geq 0 \Rightarrow y=+1$

- $\mathbf{w}^{\top} \mathbf{x}+w_{0}<0 \Rightarrow y=-1$
- Find a hyperplane that separates the data
- ... if the data is linearly separable
- But there can be many choices!
- Find the one with lowest error

Learning w

- What is an appropriate loss function?

0-1 Loss

- Number of mistakes in training data

$$
J(\mathbf{w})=\min _{\mathbf{w}, w_{0}} \sum_{i=1}^{n} \mathbb{I}\left(y_{i}\left(\mathbf{w}^{\top} \mathbf{x}_{i}+w_{0}\right)<0\right)
$$

4

- Hard to optimize
- Solution - replace it with a mathematically manageable loss

Different Loss Functions

Note

From now on, assuming that intercept and constant terms are included in \mathbf{w} and \mathbf{x}_{i}, respectively

- Squared Loss - Perceptron

$$
\begin{equation*}
J(\mathbf{w})=\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\mathbf{w}^{\top} \mathbf{x}_{i}\right)^{2} \tag{1}
\end{equation*}
$$

- Logistic Loss - Logistic Regression

$$
\begin{equation*}
J(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} \mathbf{w}^{\top} \mathbf{x}_{i}\right)\right) \tag{2}
\end{equation*}
$$

- Hinge Loss - Support Vector Machine

$$
\begin{equation*}
J(\mathbf{w})=\sum_{i=1}^{n} \max \left(0,1-y_{i} \mathbf{w}^{\top} \mathbf{x}_{i}\right) \tag{3}
\end{equation*}
$$

3 Logistic Regression

Geometric Interpretation

- Use regression to predict discrete values
- Squash output to $[0,1]$ using sigmoid function
- Output less than 0.5 is one class and greater than 0.5 is the other

Probabilistic Interpretation

- Probability of \mathbf{x} to belong to class +1

Logistic Loss Function

- For one training observation
- if $y_{i}=+1$, the probability of the predicted value to be +1

$$
p_{i}=\frac{1}{1+\exp \left(-\mathbf{w}^{\top} \mathbf{x}_{i}\right)}
$$

- if $y_{i}=-1$, the probability of the predicted value to be -1

$$
p_{i}=1-\frac{1}{1+\exp \left(-\mathbf{w}^{\top} \mathbf{x}_{i}\right)}=\frac{1}{1+\exp \left(\mathbf{w}^{\top} \mathbf{x}_{i}\right)}
$$

- In general

$$
p_{i}=\frac{1}{1+\exp \left(-y_{i} \mathbf{w}^{\top} \mathbf{x}_{i}\right)}
$$

- For logistic regression, the objective is to minimize the negative of the log probability:

$$
J(\mathbf{w})=-\sum_{i=1}^{n} \log \left(p_{i}\right)=\sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} \mathbf{w}^{\top} \mathbf{x}_{i}\right)\right)
$$

Learning Logistic Regression Model

- Direct minimization??
- No closed form solution for minimizing error
- Gradient Descent
- Newton's Method

To understand why there is no closed form solution for maximizing the loglikelihood, we first differentiate $J(\mathbf{w})$ with respect to \mathbf{w}.

$$
\begin{aligned}
\nabla J(\mathbf{w}) & = \\
\frac{d}{d \mathbf{w}} J(\mathbf{w}) & =\sum_{i=1}^{n} \log \left(1+\exp \left(-y_{i} \mathbf{w}^{\top} \mathbf{x}_{i}\right)\right) \\
& =-\frac{1}{n} \sum_{i=1}^{n} \frac{y_{i}}{1+\exp \left(y_{i} \mathbf{w}^{\top} \mathbf{x}_{i}\right)} \mathbf{x}_{i}
\end{aligned}
$$

Obviously, given that $\nabla J(\mathbf{w})$ is a non-linear function of \mathbf{w}, a closed form solution is not possible.
3.1 Using Gradient Descent for Learning Weights

- Compute gradient of $J(\mathbf{w})$ with respect to \mathbf{w}
- A convex function of \mathbf{w} with a unique global minima

$$
\nabla J(\mathbf{w})=-\frac{1}{n} \sum_{i=1}^{n} \frac{y_{i}}{1+\exp \left(y_{i} \mathbf{w}^{\top} \mathbf{x}_{i}\right)} \mathbf{x}_{i}
$$

- Update rule:

$$
\mathbf{w}_{k+1}=\mathbf{w}_{k}-\eta \frac{d}{d \mathbf{w}_{k}} L L\left(\mathbf{w}_{k}\right)
$$

3.2 Using Newton's Method

- Setting η is sometimes tricky
- Too large - incorrect results
- Too small - slow convergence
- Another way to speed up convergence

Newton's Method

$$
\mathbf{w}_{k+1}=\mathbf{w}_{k}-\eta \mathbf{H}_{k}^{-1} \nabla J\left(\mathbf{w}_{k}\right)
$$

Hessian

$$
\mathbf{H}(\mathbf{w})=\frac{1}{n} \sum_{i=1}^{n} \frac{\exp \left(y_{i} \mathbf{w}^{\top} \mathbf{x}_{i}\right)}{\left(1+\exp \left(y_{i} \mathbf{w}^{\top} \mathbf{x}_{i}\right)\right)^{2}} \mathbf{x}_{i} \mathbf{x}_{i}^{\top}
$$

References

