Introduction to Machine Learning

Linear Classifiers - Perceptrons and Logistic Regression

Varun Chandola

March 8, 2021

Outline

Contents

1	Classification	1
2	Linear Classifiers 2.1 Linear Classification via Hyperplanes	2 2
3	Logistic Regression 3.1 Using Gradient Descent for Learning Weights 3.2 Using Newton's Method	5 7 7

1 Classification

Supervised Learning - Classification

- Target y is categorical
- e.g., $y \in \{-1, +1\}$ (binary classification)
- A possible problem formulation: Learn f such that $y = f(\mathbf{x})$

2 Linear Classifiers

Decision Rule

 $y_i = \begin{cases} -1 & \text{if } w_0 + \mathbf{w}^\top \mathbf{x}_i < 0 \\ +1 & \text{if } w_0 + \mathbf{w}^\top \mathbf{x}_i \ge 0 \end{cases}$

Geometric Interpretation

2.1 Linear Classification via Hyperplanes

- Separates a *D*-dimensional space into two half-spaces
- Defined by $\mathbf{w} \in \Re^D$

- $\ Orthogonal$ to the hyperplane
- $-\,$ This ${\bf w}$ goes through the origin
- How do you check if a point lies "above" or "below" $\mathbf{w}?$
- What happens for points **on w**?

For a hyperplane that passes through the origin, a point \mathbf{x} will lie above the hyperplane if $\mathbf{w}^{\top}\mathbf{x} > 0$ and will lie below the plane if $\mathbf{w}^{\top}\mathbf{x} < 0$, otherwise. This can be further understood by understanding that $bfw^{\top}\mathbf{x}$ is essentially equal to $|\mathbf{w}||\mathbf{x}|\cos\theta$, where θ is the angle between \mathbf{w} and \mathbf{x} .

• Add a bias w_0

- $-w_0 > 0$ move along **w**
- $-w_0 < 0$ move opposite to \mathbf{w}
- How to check if point lies above or below **w**?
 - If $\mathbf{w}^{\top}\mathbf{x} + w_0 > 0$ then \mathbf{x} is above
 - Else, below
- Decision boundary represented by the hyperplane ${\bf w}$
- For binary classification, **w** points **towards** the positive class

Decision Rule

$y = sign(\mathbf{w}^{\top}\mathbf{x} + w_0)$

•
$$\mathbf{w}^{\top}\mathbf{x} + w_0 \ge 0 \Rightarrow y = +1$$

3

• $\mathbf{w}^{\top}\mathbf{x} + w_0 < 0 \Rightarrow y = -1$

- Find a hyperplane that separates the data
 - \ldots if the data is linearly separable
- But there can be many choices!
- Find the one with lowest error

Learning w

• What is an appropriate loss function?

0-1 Loss

• Number of mistakes in training data

$$J(\mathbf{w}) = \min_{\mathbf{w}, w_0} \sum_{i=1}^n \mathbb{I}(y_i(\mathbf{w}^\top \mathbf{x}_i + w_0) < 0)$$

- Hard to optimize
- Solution replace it with a mathematically manageable loss

Different Loss Functions

Note

From now on, assuming that intercept and constant terms are included in \mathbf{w} and \mathbf{x}_i , respectively.

• Squared Loss - Perceptron

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \mathbf{w}^\top \mathbf{x}_i)^2$$
(1)

• Logistic Loss - Logistic Regression

$$J(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \log\left(1 + \exp\left(-y_i \mathbf{w}^{\mathsf{T}} \mathbf{x}_i\right)\right)$$
(2)

• Hinge Loss - Support Vector Machine

$$J(\mathbf{w}) = \sum_{i=1}^{n} \max\left(0, 1 - y_i \mathbf{w}^{\top} \mathbf{x}_i\right)$$
(3)

3 Logistic Regression

Geometric Interpretation

- Use regression to predict discrete values
- Squash output to [0, 1] using sigmoid function
- $\bullet\,$ Output less than 0.5 is one class and greater than 0.5 is the other

Probabilistic Interpretation

• Probability of ${\bf x}$ to belong to class +1

Logistic Loss Function

• For one training observation,

- if
$$y_i = +1$$
, the probability of the predicted value to be $+1$

$$p_i = \frac{1}{1 + \exp\left(-\mathbf{w}^\top \mathbf{x}_i\right)}$$

- if
$$y_i = -1$$
, the probability of the predicted value to be -1

$$p_i = 1 - \frac{1}{1 + \exp(-\mathbf{w}^\top \mathbf{x}_i)} = \frac{1}{1 + \exp(\mathbf{w}^\top \mathbf{x}_i)}$$
– In general
$$p_i = \frac{1}{1 + \exp(-y_i \mathbf{w}^\top \mathbf{x}_i)}$$

• For logistic regression, the objective is to minimize the negative of the log probability:

$$J(\mathbf{w}) = -\sum_{i=1}^{n} \log \left(p_i \right) = \sum_{i=1}^{n} \log \left(1 + \exp \left(-y_i \mathbf{w}^{\top} \mathbf{x}_i \right) \right)$$

Learning Logistic Regression Model

• Direct minimization??

- No closed form solution for minimizing error

- Gradient Descent
- Newton's Method

To understand why there is no closed form solution for maximizing the loglikelihood, we first differentiate $J(\mathbf{w})$ with respect to \mathbf{w} .

$$\nabla J(\mathbf{w}) = \frac{d}{d\mathbf{w}} J(\mathbf{w}) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \mathbf{w}^{\top} \mathbf{x}_i))$$
$$= -\frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{1 + \exp(y_i \mathbf{w}^{\top} \mathbf{x}_i)} \mathbf{x}_i$$

Obviously, given that $\nabla J(\mathbf{w})$ is a non-linear function of \mathbf{w} , a closed form solution is not possible.

3.1 Using Gradient Descent for Learning Weights

- Compute gradient of $J(\mathbf{w})$ with respect to \mathbf{w}
- A convex function of ${\bf w}$ with a unique global minima

$$\nabla J(\mathbf{w}) = -\frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{1 + \exp(y_i \mathbf{w}^{\top} \mathbf{x}_i)} \mathbf{x}_i$$

• Update rule:

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \eta \frac{d}{d\mathbf{w}_k} LL(\mathbf{w}_k)$$

3.2 Using Newton's Method

- Setting η is sometimes *tricky*
- Too large incorrect results
- Too small slow convergence
- Another way to speed up convergence:

Newton's Method

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \eta \mathbf{H}_k^{-1} \nabla J(\mathbf{w}_k)$$

Hessian

$$\mathbf{H}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} \frac{\exp\left(y_i \mathbf{w}^{\top} \mathbf{x}_i\right)}{(1 + \exp\left(y_i \mathbf{w}^{\top} \mathbf{x}_i\right))^2} \mathbf{x}_i \mathbf{x}_i^{\top}$$

References

7