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1 Introduction to Fairness

Introduction

• Main text - https://fairmlbook.org [1]

– Solon Barocas, Moritz Hardt, Arvind Narayanan

• Other recommended resources:

– Fairness in machine learning (NeurIPS 2017)

– 21 fairness definitions and their politics (FAT* 2018)

– Machine Bias - COMPAS Study

• Must read - The Machine Learning Fairness Primer
by Dakota Handzlik

• Programming Assignment 3 and Gradiance Quiz #10

• Also see - The Mozilla Responsible Computer Science Chal-
lenge

What will we learn in the module?

• What principles should guide the design of a machine learning solution?

– Besides the usual performance metrics (accuracy, efficiency, etc.)

Ethical Considerations

• What ethical principles to abide by?

Fairness and Bias

• Why is fairness important?

• How does bias get introduced?

• How do we measure fairness?

• How to make algorithms fair and remove bias?
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2 Ethical Principles

Ethical Principles in ML

• What are the ethical implications of an ML Application?

• Ethics - The right thing to do

• The Trolley Problem

• Designing a self-driving car?

• Moral machine

– https://www.moralmachine.net
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Two Ethical Frameworks

Utilitarianism

• Decisions made based on the amount of overall happiness or benefit
they provide

– Greater good in greater numbers

• Not the universal human approach to decision making

• Decisions are uncertain

Deontological

• Decisions made based on a notion of moral duty or obligation

• What if the definition of moral duty is flawed?

• Decisions are certain (as long as the duty definition stays the same)

3 Fairness - Toy Example

Fairness - Toy Example

• Task: Learn a ML based job hiring algorithm

• Inputs: GPA, Interview Score

• Target: Average performance review

• Sensitive attribute: Binary (denoted by � and ∆), represents some
demographic group

– We note that GPA is correlated with the sensitive attribute
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Process

1. Regression model to predict target

2. Apply a threshold (denoted by green line) to select candidates

Toy Example

• ML models does not use sensitive attribute

• Does it mean it is fair?

• It depends on the definition of fairness

Fairness-as-blindness notion
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• Two individuals with similar features get similar treatment

• This model is fair

What about a different definition of fairness?

• Are candidates from the two groups equally likely to be hired?

• No - triangles are more likely to be hired than squares

• Why did the model become unfair because of this definition?

– In the training data, average performance review is lower for
squares than triangles

Why this disparity in the data?

• Many factors could have led to this:

– Managers who score employee’s performance might have a bias

– Workplace might be biased against one group

– Socio-economic background of one group might have resulted in
poor educational outcomes

– Some intrinsic reason

– Combination of these factors

• Let us assume that this disparity that was learnt by the ML model is
unjustified

• How do we get rid of this?

Making ML model bias-free

• Option 1: ignore GPA as a feature

– Might result in poor accuracy of the model

• Option 2: pick different thresholds for each sub-group
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– Model is no longer “blind”

• Option 3: add a diversity reward to the objective function

– Could still result in poor accuracy

4 Why fairness?

Why fairness?

• We want/expect everything to be fair and bias-free

• Machine learning driven systems are everywhere

• Obviously we want them to be fair as well

– Closely related are issues of ethics, trust, and accountability

What does fairness mean?

• Consequential decision making: ML system makes a decision that
impacts individuals

– admissions, job offers, bail granting, loan approvals

• Should use factors that are relevant to the outcome of interest

How does an ML algorithm becomes unfair?

• The “ML for People” Pipeline

Issues with the state of the society

• Most ML applications are about people

– Even a pothole identification algorithm

• Demographic disparities exist in society

• These get embedded into the training data
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State of the world

Data Model

Individuals

Measurement

Learning

Action Feedback

• As ML practitioners we are not focused on removing these disparities

• We do not want ML to reinforce these disparities

• The dreaded feedback loops [2]

Feedback loops in ML: If outcomes of the ML model are used to drive policies
that can influence societal behavior, which can then bias the data and the
resulting models.

The pothole example refers to smartphone app called “Speed Bump”,
which was deployed in the city of Boston, MA, to identify potholes from user
uploaded images that would then trigger a maintainence request to the city.
While the data-driven algorithm was about potholes, one can argue that the
data reflects patterns of smartphone ownership, which is higher in wealthier
parts of the city compared to low-income areas and areas with elderly people.
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Understanding Bias in Data

• A data sample is considered biased, if it does not correctly represent
the population parameter being estimated.

• There are several types of statistical and cognitive biases present in
data acquisition and processing.

1. Selection bias

2. Base rate fallacy (or bias or neglect)

3. Conjunction fallacy

4. Response bias

5. Confirmation bias

6. Detection bias

7. Availability bias

8. Social biases

9. Measurement bias

• For exact definitions, refer to the fairness primer.

Selection Biases

• Data instance are selected for analysis in a non-random way.

Sampling Bias

• Obtaining data in a non-random way

• Example - using opinions from Twitter to infer interest of population
on a particular issue. Twitter population is not an accurate represen-
tation of the world population.
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Survivorship Bias

• Bias due to applying critical thresholds to choose data for analysis

The above example happened during World War II when returning allied
aircrafts from the battlefield were inspected for possible reinforcements. The
distribution of gunfire on the aircrafts suggested that those would be the
potential sites for reinforcement. However, careful analysis by statistician
Abraham Wald revealed that by looking at only those aircrafts that have
survived the attacks, they were ignoring the aircrafts actually lost to enemeny
fire. He argued that the unrepresented critical areas should be the actual
choice for reinforcement.

Base Rate Fallacy/Neglect/Bias

• Similar to the concept of ignoring the prior distribution in Bayesian
analysis

How to make the ML model more fair

• Better objective functions that are fair to all sub-groups

– More about this next

5 Fairness in Classification Problems

Fairness in Classification Problems

Notation

• Predict Y given X
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• Y is our target class Y ∈ {0, 1}

• X represents the input feature vector

Example

• Y - Will an applicant pay the loan back?

• X - Applicant characteristics - credit history, income, etc.

Supervised Learning

• Given training data: (x1, y1), . . . , (xN , yN)

• Either learn a function f , such that:

y∗ = f(x∗)

• Or, assume that the data was drawn from a probability distribution

• In either case, we can consider the classification output as a random
variable Ŷ

• Now we have three random variables:

X, Y, Ŷ

• We are going to ignore how we get Ŷ from X for these discussions

How do we measure the quality of a classifier?

• So far we have been looking at accuracy

A different way to look at accuracy
Accuracy ≡ P (Y = Ŷ )

• Probability of the predicted label to be equal to the true label

• How do we calculate this?
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Event Condition Metric

Ŷ = 1 Y = 1 True positive rate (recall on positive class)

Ŷ = 0 Y = 1 False negative rate

Ŷ = 1 Y = 0 False positive rate

Ŷ = 0 Y = 0 True negative rate (recall on negative class)

Event Condition Metric

Y = 1 Ŷ = 1 precision (on positive class)

Y = 0 Ŷ = 0 precision (on negative class)

Given a test data set, one can empirically calcuate the probability of the
above binary random variable, i.e., Y = Ŷ , using the standard MLE estimate:

P (Y = Ŷ ) =

∑N
i=1 I[yi = ŷi]

N

where N are the number of test examples. The numerator is simply counting
the number of times the predicted label matches the true label.

Accuracy is not everyting!

• Consider a test data set with 90 examples with true class 1 and 10
examples with true class 0

• A degenerate classifier that classifies everything as label 1, would still
have a 90% accuracy on this data set

Other evaluation criteria

• Here we are treating class label 1 as the positive class and class label 0
as the negative class.

We can swap the condition and the event
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Score Functions

• Often classification involves computing a score and then applying a
threshold

• E.g., Logistic regression: first calculate P (Y = 1|X = x), then apply a
threshold of 0.5

• Or, Support Vector Machine: first calculate w>x and then apply a
threshold of 0

Conditional Expectation
r(x) = E[Y |X = x]

• We can treat it as a random variable too R = E[Y |X]

• This is what logistic regression uses.

From scores to classification

• Use a threshold t

y =

{
1 if r(x) ≥ t,
0 otherwise

• What threshold to choose?

– If t is high, only few examples with very high score will be classified
as 1 (accepted)

– If t is low, only few examples with very low score will be classified
as 0 (rejected)

The Receiver Operating Characteristic (ROC) Curve

• Exploring the entire range of t

• Each point on the plot is the FPR and TPR for a given value of t

• Area under the ROC curve or AUC is a quantitative metric derived
from ROC curve
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Sensitive Attributes

• Let A denote the attribute representing the sensitive characteristic of
an individual

• There could be more than one sensitive attributes

6 Quantitative Metrics for Fairness

Quantifying Fairness

• Let us define some reasonable ways of measuring fairness
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Independence Separation Sufficiency

Ŷ ⊥⊥ A Ŷ ⊥⊥ A|Y Y ⊥⊥ A|Ŷ

– There are several ways to do this

– All are debatable

• Three different categories

• Y - True label; Ŷ - Predicted label; A - Sensitive attribute;

Conditional Independence
A ⊥⊥ B|C ⇐ P (A,B|C) = P (A|C)P (B|C)

• Amount of Speeding fine ⊥⊥ Type of Car | Speed

6.1 Independence

Independence

P (Ŷ = 1|A = a) = P (Ŷ = 1|A = b),∀a, b ∈ A

• Referred to as demographic parity, statistical parity, group fairness,
disparate impact, etc.

• Probability of an individual to be assigned a class is equal for each
group

Disparate Impact Law
P (Ŷ = 1|A = a)

P (Ŷ = 1|A = b)
≥ 1− ε

For ε = 0.2 - 80 percent rule
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6.2 Separation

Separation

Ŷ ⊥⊥ A|Y

• Alternatively, the true positive rate and the false positive rate is equal
for any pair of groups:

P (Ŷ = 1|Y = 1, A = a) = P (Ŷ = 1|Y = 1, A = b)

P (Ŷ = 1|Y = 0, A = a) = P (Ŷ = 1|Y = 0, A = b)

∀a, b ∈ A

6.3 Sufficiency

Sufficiency

Y ⊥⊥ A|R

• R satisfies sufficiency when the sensitive attribute A and target variable
Y are clear from the context:

P (Y = 1|R = r, A = a) = P (Y = 1|R = r, A = b)

∀r ∈ dom(R) and a, b ∈ A

How to satisfy fairness criteria?

1. Pre-processing phase: Adjust the feature space to be uncorrelated
with the sensitive attribute.

2. Training phase: Build the constraint into the optimization process
for the classifier.

3. Post-processing phase: Adjust a learned classifier so that it is un-
correlated to the sensitive attribute

• We will focus primarily on the post-processing strategies
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Post Processing Strategies

Single Threshold

• Using a single threshold for all sensitive groups

• Simplest to implement

• Does not take fairness into account

Equal opportunity

P (Ŷ = 1|Y = 1, A = a) = P (Ŷ = 1|Y = 1, A = b)

∀a, b ∈ A

• All sensitive groups have equal true positive rates

• Choose different thresholds for each group

Post Processing Strategies

Predictive Parity

P (Y = 1|Ŷ = 1, A = a) = P (Y = 1|Ŷ = 1, A = b), ∀a, b ∈ A

• All sensitive groups have equal true positive rates

• Choose different thresholds for each group

Demographic Parity (disparate impact)

• P (Ŷ = 1|A = a) should be same for all groups

• Again, choosing different thresholds for each group would be the strat-
egy

• In practice, it can get difficult to get probabilities to line up exactly

Maximize Profit

• Choose threshold that maximizes the overall profit

• Ignore fairness
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Table 1: Credit score distribution by race
Race or ethnicity Samples with both score and outcome

White 133,165
Black 18,274

Hispanic 14,702
Asian 7,906
Total 174,047

7 Case Study in Credit Scoring

Case Study: Credit Scoring

• Extend loan or not - based on the risk that a loan applicant will default
on a loan

• Data from the Federal Reserve

– A - Demographic information (race)

– R - Credit score

– Y - Default or not (defined by credit bureau)

Group-wise distribution of credit score

• Strongly depends on the group

Using credit score for classification

• How make the classifier fair?

Four Strategies

1. Maximum profit: Pick group-dependent score thresholds in a way that
maximizes profit

2. Single threshold: Pick a single uniform score threshold for all groups in
a way that maximizes profit

18



19

3. Separation: Achieve an equal true/false positive rate in all groups.
Subject to this constraint, maximize profit.

4. Independence: Achieve an equal acceptance rate in all groups. Subject
to this constraint, maximize profit.

What is the profit?

• Need to assume a reward for a true positive classification and a cost/penalty
for a false positive classification

• We will assume that cost of a false positive is 6 times greater than the
reward for a true positive.

Comparing different criteria
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