Introduction to Machine Learning

Clustering

Varun Chandola

April 21, 2019

Outline

Contents

1	l Clustering		1
	1.1	Clustering Definition	2
	1.2	K-Means Clustering	4
	1.3	Instantations and Variants of K-Means	4
	1.4	Choosing Parameters	4
	1.5	Initialization Issues	5
	1.6	K-Means Limitations	5
2	Spectral Clustering		6
	2.1	Graph Laplacian	7
	2.2	Spectral Clustering Algorithm	8

1 Clustering

Publishing a Magazine

- Imagine your are a magazine editor
- Need to produce the next issue
- What do you do?

- Call your four assistant editors
 - 1. Politics
 - 2. Health
 - 3. Technology
 - 4. Sports
- $-\,$ Ask each to send in k articles
- Join all to create an issue

Treating a Magazine Issue as a Data Set

- Each article is a data point consisting of words, etc.
- Each article has a (hidden) type sports, health, politics, and technology

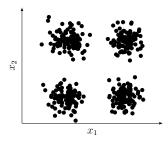
Now imagine your are the reader

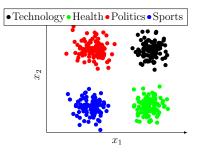
- Can you assign the type to each article?
- Simpler problem: Can you group articles by type?
- Clustering

1.1 Clustering Definition

- Grouping similar things together
- A notion of a similarity or distance metric
- A type of **unsupervised learning**
 - Learning without any labels or target

Expected Outcome of Clustering





1.2 K-Means Clustering

- **Objective**: Group a set of N points $(\in \mathbb{R}^D)$ into K clusters.
- 1. **Start** with k randomly initialized points in D dimensional space
 - Denoted as $\{\mathbf{c}_k\}_{k=1}^K$
 - \bullet Also called $cluster\ centers$
- 2. Assign each input point \mathbf{x}_n ($\forall n \in [1, N]$) to cluster k, such that:

 $\min_{k} \operatorname{dist}(\mathbf{x}_n, \mathbf{c}_k)$

- 3. **Revise** each cluster center \mathbf{c}_k using all points assigned to cluster k
- 4. **Repeat** 2
- 1.3 Instantations and Variants of K-Means
 - Finding distance
 - Euclidean distance is popular
 - Finding cluster centers
 - Mean for K-Means
 - Median for k-medoids

1.4 Choosing Parameters

- 1. Similarity/distance metric
 - Can use non-linear transformations
 - K-Means with Euclidean distance produces "circular" clusters
- 2. How to set k?
 - Trial and error
 - How to evaluate clustering?

• K-Means objective function

$$J(\mathbf{c}, \mathbf{R}) = \sum_{n=1}^{N} \sum_{k=1}^{K} R_{nk} \|\mathbf{x}_n - \mathbf{c}_k\|^2$$

• **R** is the cluster assignment matrix

$$R_{nk} = \begin{cases} 1 & \text{If } \mathbf{x}_n \in \text{ cluster } k \\ 0 & \text{Otherwise} \end{cases}$$

1.5 Initialization Issues

- Can lead to wrong clustering
- Better strategies
 - 1. Choose first centroid randomly, choose second farthest away from first, third farthest away from first and second, and so on.
 - 2. Make multiple runs and choose the best

1.6 K-Means Limitations

Strengths

- Simple
- Can be extended to other types of data
- Easy to parallelize

Weaknesses

- Circular clusters (not with kernelized versions)
- Choosing K is always an issue
- Not guaranteed to be optimal
- Works well if natural clusters are round and of equal densities
- Hard Clustering

Issues with K-Means

- "Hard clustering"
- Assign every data point to exactly one cluster
- Probabilistic Clustering
 - Each data point can belong to multiple clusters with varying probabilities
 - In general

 $P(\mathbf{x}_i \in C_j) > 0 \quad \forall j = 1 \dots K$

 For hard clustering probability will be 1 for one cluster and 0 for all others

2 Spectral Clustering

- An alternate approach to clustering
- Let the data be a set of N points

 $\mathbf{X} = \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$

• Let **S** be a $N \times N$ similarity matrix

 $S_{ij} = sim(\mathbf{x}_i, \mathbf{x}_j)$

- sim(,) is a similarity function
- Construct a weighted undirected graph from **S** with adjacency matrix, **W** $\begin{pmatrix} sim(\mathbf{x}, \mathbf{x}) \\ if \mathbf{x}, is parent peighbor of \mathbf{x}. \end{pmatrix}$

 $W_{ij} = \begin{cases} sim(\mathbf{x}_i, \mathbf{x}_j) & \text{if } \mathbf{x}_i \text{ is nearest neighbor of } \mathbf{x}_j \\ 0 & otherwise \end{cases}$

- Can use more than 1 nearest neighbors to construct the graph
- Clustering ${\bf X}$ into K clusters is equivalent to finding K cuts in the graph ${\bf W}$

 $-A_1, A_2, \ldots, A_K$

• Possible objective function

$$cut(A_1, A_2, \dots, A_K) \triangleq \frac{1}{2} \sum_{k=1}^{K} W(A_k, \bar{A}_k)$$

• where \bar{A}_k denotes the nodes in the graph which are **not** in A_k and

$$W(A,B) \triangleq \sum_{i \in A, j \in B} W_{ij}$$

• For K = 2, an optimal solution would have only one node in A_1 and rest in A_2 (or vice-versa)

Normalized Min-cut Problem

$$normcut(A_1, A_2, \dots, A_K) \triangleq \frac{1}{2} \sum_{k=1}^{K} \frac{W(A_k, \bar{A}_k)}{vol(A_k)}$$

where $vol(A) \triangleq \sum_{i \in A} d_i$, d_i is the weighted degree of the node *i*

- Equivalent to solving a 0-1 knapsack problem
- Find N binary vectors, \mathbf{c}_i of length K such that $c_{ik} = 1$ only if point i belongs to cluster k
- If we relax constraints to allow c_{ik} to be real-valued, the problem becomes an eigenvector problem
 - Hence the name: **spectral clustering**

2.1 Graph Laplacian

 $\mathbf{L} \triangleq \mathbf{D} - \mathbf{W}$

• **D** is a diagonal matrix with degree of corresponding node as the diagonal value

Properties of Laplacian Matrix

- 1. Each row sums to 0
- 2. 1 is an eigen vector with eigen value equal to 0
 - This means that L1 = 01.
- 3. Symmetric and positive semi-definite
- 4. Has N non-negative real-valued eigenvalues
- 5. If the graph (**W**) has K connected components, then **L** has K eigenvectors spanned by $\mathbf{1}_{\mathbf{A}_1}, \ldots, \mathbf{1}_{\mathbf{A}_{\mathbf{K}}}$ with 0 eigenvalue.

To see why \mathbf{L} is positive semi-definite:

$$\begin{aligned} \mathbf{x}\mathbf{L}\mathbf{x}^{\top} &= \mathbf{x}\mathbf{D}\mathbf{x}^{\top} - \mathbf{x}\mathbf{W}\mathbf{x}^{\top} \\ &= \sum_{i} d_{i}x_{i}^{2} - \sum_{i} \sum_{j} x_{i}x_{j}w_{ij} \\ &= \frac{1}{2} \left(\sum_{i} d_{i}x_{i}^{2} - 2\sum_{i} \sum_{j} x_{i}x_{j}w_{ij} + \sum_{j} d_{j}x_{j}^{2} \right) \\ &= \frac{1}{2} \sum_{i} \sum_{j} w_{ij}(x_{i} - x_{j})^{2} \end{aligned}$$

which is $\geq 0 \forall \mathbf{x}$.

2.2 Spectral Clustering Algorithm

Observation

- \bullet In practice, ${\bf W}$ might not have K exactly isolated connected components
- By *perturbation theory*, the smallest eigenvectors of **L** will be close to the ideal indicator functions

Algorithm

- Compute first (smallest) K eigen vectors of **L**
- Let **U** be the $N \times K$ matrix with eigenvectors as the columns
- $\bullet\,$ Perform kMeans clustering on the rows of ${\bf U}$

References