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1 Clustering

Publishing a Magazine

• Imagine your are a magazine editor

• Need to produce the next issue

• What do you do?

– Call your four assistant editors

1. Politics

2. Health

3. Technology

4. Sports

– Ask each to send in k articles

– Join all to create an issue

Treating a Magazine Issue as a Data Set

• Each article is a data point consisting of words, etc.

• Each article has a (hidden) type - sports, health, politics, and
technology

Now imagine your are the reader

• Can you assign the type to each article?

• Simpler problem: Can you group articles by type?

• Clustering

1.1 Clustering Definition

• Grouping similar things together

• A notion of a similarity or distance metric

• A type of unsupervised learning

– Learning without any labels or target

Expected Outcome of Clustering
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1.2 K-Means Clustering

• Objective: Group a set of N points (∈ <D) into K clusters.

1. Start with k randomly initialized points in D dimensional space

• Denoted as {ck}Kk=1

• Also called cluster centers

2. Assign each input point xn (∀n ∈ [1, N ]) to cluster k, such that:

min
k

dist(xn, ck)

3. Revise each cluster center ck using all points assigned to cluster k

4. Repeat 2

1.3 Instantations and Variants of K-Means

• Finding distance

– Euclidean distance is popular

• Finding cluster centers

– Mean for K-Means

– Median for k-medoids

1.4 Choosing Parameters

1. Similarity/distance metric

• Can use non-linear transformations

• K-Means with Euclidean distance produces “circular” clusters

2. How to set k?

• Trial and error

• How to evaluate clustering?
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• K-Means objective function

J(c,R) =
N∑

n=1

K∑

k=1

Rnk‖xn − ck‖2

• R is the cluster assignment matrix

Rnk =

{
1 If xn ∈ cluster k
0 Otherwise

1.5 Initialization Issues

• Can lead to wrong clustering

• Better strategies

1. Choose first centroid randomly, choose second farthest away from
first, third farthest away from first and second, and so on.

2. Make multiple runs and choose the best

1.6 K-Means Limitations

Strengths

• Simple

• Can be extended to other types of data

• Easy to parallelize

Weaknesses

• Circular clusters (not with kernelized versions)

• Choosing K is always an issue

• Not guaranteed to be optimal

• Works well if natural clusters are round and of equal densities

• Hard Clustering
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Issues with K-Means

• “Hard clustering”

• Assign every data point to exactly one cluster

• Probabilistic Clustering

– Each data point can belong to multiple clusters with varying prob-
abilities

– In general
P (xi ∈ Cj) > 0 ∀j = 1 . . . K

– For hard clustering probability will be 1 for one cluster and 0 for
all others

2 Spectral Clustering

• An alternate approach to clustering

• Let the data be a set of N points

X = x1,x2, . . . ,xN

• Let S be a N ×N similarity matrix

Sij = sim(xi,xj)

• sim(, ) is a similarity function

• Construct a weighted undirected graph from S with adjacency matrix,
W

Wij =

{
sim(xi,xj) if xi is nearest neighbor of xj

0 otherwise

• Can use more than 1 nearest neighbors to construct the graph

• Clustering X into K clusters is equivalent to finding K cuts in the
graph W
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– A1, A2, . . . , AK

• Possible objective function

cut(A1, A2, . . . , AK) , 1

2

K∑

k=1

W (Ak, Āk)

• where Āk denotes the nodes in the graph which are not in Ak and

W (A,B) ,
∑

i∈A,j∈B
Wij

• For K = 2, an optimal solution would have only one node in A1 and
rest in A2 (or vice-versa)

Normalized Min-cut Problem

normcut(A1, A2, . . . , AK) , 1

2

K∑

k=1

W (Ak, Āk)

vol(Ak)

where vol(A) ,
∑

i∈A di, di is the weighted degree of the node i

• Equivalent to solving a 0-1 knapsack problem

• Find N binary vectors, ci of length K such that cik = 1 only if point i
belongs to cluster k

• If we relax constraints to allow cik to be real-valued, the problem be-
comes an eigenvector problem

– Hence the name: spectral clustering

2.1 Graph Laplacian

L , D−W

• D is a diagonal matrix with degree of corresponding node as the diag-
onal value

Properties of Laplacian Matrix
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1. Each row sums to 0

2. 1 is an eigen vector with eigen value equal to 0

• This means that L1 = 01.

3. Symmetric and positive semi-definite

4. Has N non-negative real-valued eigenvalues

5. If the graph (W) has K connected components, then L has K eigen-
vectors spanned by 1A1 , . . . ,1AK

with 0 eigenvalue.

To see why L is positive semi-definite:

xLx> = xDx> − xWx>

=
∑

i

dix
2
i −

∑

i

∑

j

xixjwij

=
1

2

(∑

i

dix
2
i − 2

∑

i

∑

j

xixjwij +
∑

j

djx
2
j

)

=
1

2

∑

i

∑

j

wij(xi − xj)
2

which is ≥ 0∀x.

2.2 Spectral Clustering Algorithm

Observation

• In practice, W might not have K exactly isolated connected compo-
nents

• By perturbation theory, the smallest eigenvectors of L will be close to
the ideal indicator functions

Algorithm

• Compute first (smallest) K eigen vectors of L

• Let U be the N ×K matrix with eigenvectors as the columns

• Perform kMeans clustering on the rows of U
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