Introduction to Machine Learning

Clustering

Varun Chandola

Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu

Outline

Clustering

Clustering Definition
K-Means Clustering
Instantations and Variants of K-Means
Choosing Parameters
Initialization Issues
K-Means Limitations

Spectral Clustering

Graph Laplacian Spectral Clustering Algorithm

Publishing a Magazine

- Imagine your are a magazine editor
- ▶ Need to produce the next issue
- ▶ What do you do?

Chandola@UB

Publishing a Magazine

- Imagine your are a magazine editor
- ▶ Need to produce the next issue
- ► What do you do?
 - Call your four assistant editors
 - 1. Politics
 - 2. Health
 - Technology
 - 4. Sports
 - Ask each to send in k articles
 - Join all to create an issue

Treating a Magazine Issue as a Data Set

- ► Each article is a data point consisting of words, etc.
- ► Each article has a (hidden) type sports, health, politics, and technology

Now imagine your are the reader

► Can you assign the type to each article?

Treating a Magazine Issue as a Data Set

- ► Each article is a data point consisting of words, etc.
- ► Each article has a (hidden) type sports, health, politics, and technology

Now imagine your are the reader

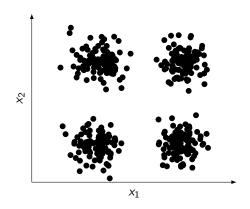
- Can you assign the type to each article?
- Simpler problem: Can you group articles by type?
- Clustering

What is Clustering?

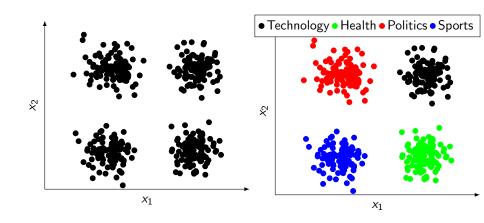
- Grouping similar things together
- ► A notion of a similarity or distance metric
- ► A type of unsupervised learning
 - Learning without any labels or target

Chandola@UB

Expected Outcome of Clustering



Expected Outcome of Clustering



▶ **Objective**: Group a set of *N* points $(\in \Re^D)$ into *K* clusters.

- ▶ **Objective**: Group a set of *N* points $(\in \Re^D)$ into *K* clusters.
- 1. **Start** with *k randomly initialized* points in *D* dimensional space
 - ▶ Denoted as $\{\mathbf{c}_k\}_{k=1}^K$
 - ► Also called *cluster centers*

Chandola@UB

- ▶ **Objective**: Group a set of *N* points $(\in \Re^D)$ into *K* clusters.
- 1. **Start** with *k randomly initialized* points in *D* dimensional space
 - ▶ Denoted as $\{\mathbf{c}_k\}_{k=1}^K$
 - ► Also called *cluster centers*
- 2. **Assign** each input point \mathbf{x}_n ($\forall n \in [1, N]$) to cluster k, such that:

$$\min_{k} \operatorname{dist}(\mathbf{x}_{n}, \mathbf{c}_{k})$$

- ▶ **Objective**: Group a set of *N* points $(\in \Re^D)$ into *K* clusters.
- 1. Start with *k randomly initialized* points in *D* dimensional space
 - ▶ Denoted as $\{\mathbf{c}_k\}_{k=1}^K$
 - ► Also called *cluster centers*
- 2. **Assign** each input point \mathbf{x}_n ($\forall n \in [1, N]$) to cluster k, such that:

$$\min_{k} \operatorname{dist}(\mathbf{x}_{n}, \mathbf{c}_{k})$$

3. Revise each cluster center c_k using all points assigned to cluster k

- ▶ **Objective**: Group a set of *N* points $(\in \Re^D)$ into *K* clusters.
- 1. Start with *k randomly initialized* points in *D* dimensional space
 - ▶ Denoted as $\{\mathbf{c}_k\}_{k=1}^K$
 - Also called cluster centers.
- 2. **Assign** each input point \mathbf{x}_n ($\forall n \in [1, N]$) to cluster k, such that:

$$\min_{k} \operatorname{dist}(\mathbf{x}_{n}, \mathbf{c}_{k})$$

- 3. Revise each cluster center \mathbf{c}_k using all points assigned to cluster k
- 4. Repeat 2

Variants of K-Means

- Finding distance
 - ► Euclidean distance is popular
- ► Finding cluster centers
 - ► Mean for K-Means
 - Median for k-medoids

Chandola@UB

Choosing Parameters

- 1. Similarity/distance metric
 - Can use non-linear transformations
 - K-Means with Euclidean distance produces "circular" clusters
- 2. How to set k?
 - ► Trial and error
 - ► How to evaluate clustering?
 - K-Means objective function

$$J(\mathbf{c}, \mathbf{R}) = \sum_{n=1}^{N} \sum_{k=1}^{K} R_{nk} \|\mathbf{x}_n - \mathbf{c}_k\|^2$$

R is the cluster assignment matrix

$$R_{nk} = \begin{cases} 1 & \text{If } \mathbf{x}_n \in \text{ cluster } k \\ 0 & \text{Otherwise} \end{cases}$$

Initialization Issues

- ► Can lead to wrong clustering
- ► Better strategies
 - 1. Choose first centroid randomly, choose second farthest away from first, third farthest away from first and second, and so on.
 - 2. Make multiple runs and choose the best

Strengths and Limitations of K-Means

Strengths

- Simple
- Can be extended to other types of data
- Easy to parallelize

Weaknesses

- Circular clusters (not with kernelized versions)
- Choosing K is always an issue
- Not guaranteed to be optimal
- ▶ Works well if natural clusters are round and of equal densities
- ► Hard Clustering

Issues with K-Means

- "Hard clustering"
- Assign every data point to exactly one cluster
- Probabilistic Clustering
 - Each data point can belong to multiple clusters with varying probabilities
 - ► In general

$$P(\mathbf{x}_i \in C_i) > 0 \quad \forall j = 1 \dots K$$

For hard clustering probability will be 1 for one cluster and 0 for all others

Spectral Clustering

- An alternate approach to clustering
- ► Let the data be a set of *N* points

$$\mathbf{X} = \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N$$

▶ Let **S** be a $N \times N$ similarity matrix

$$S_{ij} = sim(\mathbf{x}_i, \mathbf{x}_j)$$

- ► sim(,) is a similarity function
- Construct a weighted undirected graph from S with adjacency matrix, W

$$W_{ij} = \begin{cases} sim(\mathbf{x}_i, \mathbf{x}_j) & \text{if } \mathbf{x}_i \text{ is nearest neighbor of } \mathbf{x}_j \\ 0 & otherwise \end{cases}$$

▶ Can use more than 1 nearest neighbors to construct the graph

Spectral Clustering as a Graph Min-cut Problem

- ► Clustering **X** into *K* clusters is equivalent to finding *K* cuts in the graph W
 - \triangleright A_1, A_2, \ldots, A_K
- Possible objective function

$$cut(A_1, A_2, \ldots, A_K) \triangleq \frac{1}{2} \sum_{k=1}^K W(A_k, \bar{A}_k)$$

• where \bar{A}_k denotes the nodes in the graph which are **not in** A_k and

$$W(A, B) \triangleq \sum_{i \in A, j \in B} W_{ij}$$

Straight min-cut results in trivial solution

For K = 2, an optimal solution would have only one node in A_1 and rest in A_2 (or vice-versa)

Normalized Min-cut Problem

$$normcut(A_1, A_2, \dots, A_K) \triangleq \frac{1}{2} \sum_{k=1}^{K} \frac{W(A_k, \bar{A}_k)}{vol(A_k)}$$

where $vol(A) \triangleq \sum_{i \in A} d_i$, d_i is the weighted degree of the node i

NP Hard Problem

- ► Equivalent to solving a 0-1 knapsack problem
- ▶ Find N binary vectors, \mathbf{c}_i of length K such that $c_{ik} = 1$ only if point i belongs to cluster k
- ▶ If we relax constraints to allow *c_{ik}* to be real-valued, the problem becomes an eigenvector problem
 - ► Hence the name: spectral clustering

16 / 19

The Graph Laplacian

$$L \triangleq D - W$$

▶ D is a diagonal matrix with degree of corresponding node as the diagonal value

Properties of Laplacian Matrix

- 1. Each row sums to 0
- $2.\,\,1$ is an eigen vector with eigen value equal to 0
- 3. Symmetric and positive semi-definite
- 4. Has N non-negative real-valued eigenvalues
- 5. If the graph (**W**) has K connected components, then **L** has K eigenvectors spanned by $\mathbf{1}_{A_1}, \ldots, \mathbf{1}_{A_K}$ with 0 eigenvalue.

17 / 19

Spectral Clustering Algorithm

Observation

- ▶ In practice, W might not have K exactly isolated connected components
- By perturbation theory, the smallest eigenvectors of L will be close to the ideal indicator functions

Algorithm

- Compute first (smallest) K eigen vectors of L
- ▶ Let **U** be the $N \times K$ matrix with eigenvectors as the columns
- Perform kMeans clustering on the rows of U

18 / 19

References