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1 Linear Regression

1.1 Problem Formulation
e There is one scalar target variable y (instead of hidden)
e There is one vector input variable x

e Inductive bias:

y=w'x

Linear Regression Learning Task
Learn w given training examples, (X, y).

The training data is denoted as (X,y), where X is a N x D data matrix con-
sisting of IV data examples such that each data example is a D dimensional
vector. y is a N x 1 vector consisting of corresponding target values for the
examples in X.

e y is assumed to be normally distributed
y~N(Ww'x,0%)
e or, equivalently:
y = wix+e
where € ~ N(0,0?)
e y is a linear combination of the input variables
e Given w and o2, one can find the probability distribution of y for a

given X

1.2 Learning Parameters

e Find w and o? that maximize the likelihood of training data

Wure = (X'X)7'XTy
N 1
Uﬁ{LE = N(Y - XW)T(Y - Xw)



The derivation of the MLE estimates can be done by maximizing the log-
likelihood of the data set. The likelihood of the training data set is given
by:
yi —w'xi)’
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L(W):ﬁ ! ex (7( )
paliey om0 r

The log-likelihood is given by:

N
1 1 .
LL(w) = ~3 log 27 —logo — 552 E (yi — w'x;)?
o

i=1
This can be rewritten in matrix notation as:

1
LL(w) = log 21 — logo —

=3 Saly = Xw)(y — Xw)
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To maximize the log-likelihood, we first compute its derivative with respect
to w and o.

OLL(w) 10
Tow = Tagiow ~XW)ly —Xw)
1 0
= 7@%< Ty+wTXTXw72yTXw)

Note that, we use the fact that (Xw) Ty = y"Xw, since both quantities are
scalars and the transpose of a scalar is equal to itself. Continuing with the
derivative:

OLL(w) 1 T .
oW = 7ﬁ(2w X'X -2y ' X)

Setting the derivative to 0, we get:
2w XTX —2y'X = 0
wX™X = y'X
(X™X)"™w = XTy (Taking transpose both sides)
X™X)w = X'y
w = (X'X)"'XTy
In a similar fashion, one can set the derivative to 0 with respect to ¢ and
plug in the the optimal value of w

2 Bayesian Linear Regression

3 Bayesian Regression
e “Penalize” large values of w
e A zero-mean Gaussian prior
p(w) = N(wl0,7°1)
e What is posterior of w

p(w[D) oc [TV (wilw i, 0*)p(w)
e Posterior is also Gaussian

3.1 Estimating Bayesian Regression Parameters

e Prior for w
w ~ N (w|0,7°Ip)

e Posterior for w

p(y|X, w)p(w)
p(y|X)

2 2
= Nw=X"X+ %ID)’ley7 (XX + %ID)’I)

p(wly,X) =

e Posterior distribution for w is also Gaussian
e What will be MAP estimate for w?

The denominator term in the posterior above can be computed as the marginal
likelihood of data by marginalizing w:

py[X) = / P(y1X, w)p(w)dw



One can compute the posterior for w as follows. We first show that the
likelihood of y, i.e., all target values in the training data, can be jointly
modeled as a Gaussian as follows:

1 1
X, w) = ——cap | — (Y — WX 2>
p(y|X, w) | |1 oLl < 552 )

1 1 5
= G (‘ﬁ'y ~ v )
= .’\/‘(){W7 UZID)

N
i=

Ignoring the denominator which does not depend on w:

1 1
ﬁ(y - Xw)T(y - XW))ffIP(—ﬁWTW)

x exp(—%(w - W)T(%XTX + glp)(w —w)

p(wly,X) o exp(—

where w = (X"X + Z—jID)’]Xy.

3.2 Prediction with Bayesian Regression
e For a new x*, predict y*

e Point estimate of y*
Yy = WX
e Treating y as a Gaussian random variable
Py x7) = N(‘/’\VLLEX*» Trm)
Py [x") = N(WipapX" T3rap)
e Treating y and w as random variables

p(y'Ix") = / Py |x", w)p(w|X, y)dw

e This is also Gaussian!

ot
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Handling Outliers in Regression

Linear regression training gets impacted by the presence of outliers

The square term in the exponent of the Gaussian pdf is the culprit
— Equivalent to the square term in the loss

How to handle this (Robust Regression)?

Probabilistic:

— Use a different distribution instead of Gaussian for p(y|x)

— Robust regression uses Laplace distribution
p(y|x) ~ Laplace(w " x,b)

Geometric:

— Least absolute deviations instead of least squares
N
J(w) = Z lyi — WTX|
i=1

Probabilistic Interpretation of Logistic Re-
gression

y|x is a Bernoulli distribution with parameter 6 = sigmoid(w " x)

When a new input x* arrives, we toss a coin which has sigmoid(w'x*)

as the probability of heads
If outcome is heads, the predicted class is 1 else 0

Learns a linear boundary

Learning Task for Logistic Regression
Given training examples (x;,y;)2,, learn w



6 Logistic Regression - Training
e MLE Approach
e Assume that y € {0,1}
e What is the likelihood for a bernoulli sample?

— Iy =1 py) = 0 = ey
~Hy=0p() =1-6: = gy
— In general, p(y;) = 07" (1 — 6;)'~vi

Log-likelihood

N
LL(w) = Zyl log6; + (1 —y;)log (1 —6;)

i=1

e No closed form solution for maximizing log-likelihood

To understand why there is no closed form solution for maximizing the log-
likelihood, we first differentiate LL(w) with respect to w. We make use of
the useful result for sigmoid:

b;

dw

Using this result we obtain:

iLL( ) = i&@.(l,g.) o (lfyi)g.(l —0)x;i
dw w - g 07{ K K x7r 1 _ 01 K 1 X7r
N
= ) 1= 6;) — (1 —y)0:)x;
i=1
N

= Y (wi—0)x

i=1

Obviously, given that 6; is a non-linear function of w, a closed form solution
is not possible.

6.1 Using Gradient Descent for Learning Weights
e Compute gradient of LL with respect to w
e A convex function of w with a unique global maximum
d N
—LL(w) = Z(Zﬁ —0:)x%;

i=1

e Update rule:

d
Wil = Wi + "ka LL(wy)

6.2 Using Newton’s Method
e Setting 7 is sometimes tricky
e Too large — incorrect results
e Too small - slow convergence
e Another way to speed up convergence:
Newton’s Method d
W1 = Wi + ’r]H;ld—WLL(wk)
e Hessian or H is the second order derivative of the objective function

e Newton’s method belong to the family of second order optimization
algorithms

e For logistic regression, the Hessian is:

8



6.3 Regularization with Logistic Regression
e Overfitting is an issue, especially with large number of features
e Add a Gaussian prior ~ N(0,72)

e Fasy to incorporate in the gradient descent based approach

1
LL'(w) = LL(w) — 5AwTw

d d
%LL (w) = %LL(W) —Aw
H =H -\

where [ is the identity matrix.

6.4 Handling Multiple Classes
o p(y|x) ~ Multinoulli(0)
e Multinoulli parameter vector 6 is defined as:

exp(w] X)

el
S, eap(w,x)

e Multiclass logistic regression has C' weight vectors to learn

6.5 Bayesian Logistic Regression
e How to get the posterior for w?
e Not easy - Why?
Laplace Approximation
e We do not know what the true posterior distribution for w is.
e Is there a close-enough (approximate) Gaussian distribution?
One should note that we used a Gaussian prior for w which is not a conjugate

prior for the Bernoulli distribution used in the logistic regression. In fact
there is no convenient prior that may be used for logistic regression.
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