
Introduction to Machine Learning
Bayesian Regression

Varun Chandola

April 3, 2020

Outline

Contents

1 Linear Regression 2
1.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Learning Parameters . . . . . . . . . . . . . . . . . . . . . . . 2

2 Bayesian Linear Regression 4

3 Bayesian Regression 4
3.1 Estimating Bayesian Regression Parameters . . . . . . . . . . 4
3.2 Prediction with Bayesian Regression . . . . . . . . . . . . . . 5

4 Handling Outliers in Regression 6

5 Probabilistic Interpretation of Logistic Regression 6

6 Logistic Regression - Training 7
6.1 Using Gradient Descent for Learning Weights . . . . . . . . . 8
6.2 Using Newton’s Method . . . . . . . . . . . . . . . . . . . . . 8
6.3 Regularization with Logistic Regression . . . . . . . . . . . . . 9
6.4 Handling Multiple Classes . . . . . . . . . . . . . . . . . . . . 9
6.5 Bayesian Logistic Regression . . . . . . . . . . . . . . . . . . . 9

1 Linear Regression

1.1 Problem Formulation

• There is one scalar target variable y (instead of hidden)

• There is one vector input variable x

• Inductive bias:
y = w>x

Linear Regression Learning Task
Learn w given training examples, 〈X,y〉.
The training data is denoted as 〈X,y〉, where X is a N×D data matrix con-
sisting of N data examples such that each data example is a D dimensional
vector. y is a N × 1 vector consisting of corresponding target values for the
examples in X.

• y is assumed to be normally distributed

y ∼ N (w>x, σ2)

• or, equivalently:
y = w>x + ε

where ε ∼ N (0, σ2)

• y is a linear combination of the input variables

• Given w and σ2, one can find the probability distribution of y for a
given x

1.2 Learning Parameters

• Find w and σ2 that maximize the likelihood of training data

ŵMLE = (X>X)−1X>y

σ̂2
MLE =

1

N
(y −Xw)>(y −Xw)
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The derivation of the MLE estimates can be done by maximizing the log-
likelihood of the data set. The likelihood of the training data set is given
by:

L(w) =
N∏

i=1

1√
2πσ

exp(−(yi −w>xi)
2

2σ2
)

The log-likelihood is given by:

LL(w) = −1

2
log 2π − log σ − 1

2σ2

N∑

i=1

(yi −w>xi)
2

This can be rewritten in matrix notation as:

LL(w) = −1

2
log 2π − log σ − 1

2σ2
(y −Xw)>(y −Xw)

To maximize the log-likelihood, we first compute its derivative with respect
to w and σ.

∂LL(w)

∂w
= − 1

2σ2

∂

∂w
(y −Xw)>(y −Xw)

= − 1

2σ2

∂

∂w
(y>y + w>X>Xw − 2y>Xw)

Note that, we use the fact that (Xw)>y = y>Xw, since both quantities are
scalars and the transpose of a scalar is equal to itself. Continuing with the
derivative:

∂LL(w)

∂w
= − 1

2σ2
(2w>X>X− 2y>X)

Setting the derivative to 0, we get:

2w>X>X− 2y>X = 0

w>X>X = y>X

(X>X)>w = X>y (Taking transpose both sides)

(X>X)w = X>y

w = (X>X)−1X>y

In a similar fashion, one can set the derivative to 0 with respect to σ and
plug in the the optimal value of w
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2 Bayesian Linear Regression

3 Bayesian Regression

• “Penalize” large values of w

• A zero-mean Gaussian prior

p(w) = N (w|0, τ 2I)

• What is posterior of w

p(w|D) ∝
∏

i

N (yi|w>xi, σ
2)p(w)

• Posterior is also Gaussian

3.1 Estimating Bayesian Regression Parameters

• Prior for w
w ∼ N (w|0, τ 2ID)

• Posterior for w

p(w|y,X) =
p(y|X,w)p(w)

p(y|X)

= N (w̄ = (X>X +
σ2

τ 2
ID)−1X>y, σ2(X>X +

σ2

τ 2
ID)−1)

• Posterior distribution for w is also Gaussian

• What will be MAP estimate for w?

The denominator term in the posterior above can be computed as the marginal
likelihood of data by marginalizing w:

p(y|X) =

∫
p(y|X,w)p(w)dw
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One can compute the posterior for w as follows. We first show that the
likelihood of y, i.e., all target values in the training data, can be jointly
modeled as a Gaussian as follows:

p(y|X,w) =
N∏

i=1

1√
2πσ2

exp

(
− 1

2σ2
(yi −w>xi)

2

)

=
1

(2πσ2)N/2
exp

(
− 1

2σ2
|y −Xw|2

)

= N (Xw, σ2ID)

Ignoring the denominator which does not depend on w:

p(w|y,X) ∝ exp(− 1

2σ2
(y −Xw)>(y −Xw))exp(− 1

2τ 2
w>w)

∝ exp(−1

2
(w − w̄)>(

1

σ2
X>X +

1

τ 2
ID)(w − w̄))

where w̄ = (X>X + σ2

τ2
ID)−1Xy.

3.2 Prediction with Bayesian Regression

• For a new x∗, predict y∗

• Point estimate of y∗

y∗ = ŵ>MLEx∗

• Treating y as a Gaussian random variable

p(y∗|x∗) = N (ŵ>MLEx∗, σ̂2
MLE)

p(y∗|x∗) = N (ŵ>MAPx∗, σ̂2
MAP )

• Treating y and w as random variables

p(y∗|x∗) =

∫
p(y∗|x∗,w)p(w|X,y)dw

• This is also Gaussian!
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4 Handling Outliers in Regression

• Linear regression training gets impacted by the presence of outliers

• The square term in the exponent of the Gaussian pdf is the culprit

– Equivalent to the square term in the loss

• How to handle this (Robust Regression)?

• Probabilistic:

– Use a different distribution instead of Gaussian for p(y|x)

– Robust regression uses Laplace distribution

p(y|x) ∼ Laplace(w>x, b)

• Geometric:

– Least absolute deviations instead of least squares

J(w) =
N∑

i=1

|yi −w>x|

5 Probabilistic Interpretation of Logistic Re-

gression

• y|x is a Bernoulli distribution with parameter θ = sigmoid(w>x)

• When a new input x∗ arrives, we toss a coin which has sigmoid(w>x∗)
as the probability of heads

• If outcome is heads, the predicted class is 1 else 0

• Learns a linear boundary

Learning Task for Logistic Regression
Given training examples 〈xi, yi〉Di=1, learn w
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6 Logistic Regression - Training

• MLE Approach

• Assume that y ∈ {0, 1}

• What is the likelihood for a bernoulli sample?

– If yi = 1, p(yi) = θi = 1
1+exp(−w>xi)

– If yi = 0, p(yi) = 1− θi = 1
1+exp(w>xi)

– In general, p(yi) = θyii (1− θi)1−yi

Log-likelihood

LL(w) =
N∑

i=1

yi log θi + (1− yi) log (1− θi)

• No closed form solution for maximizing log-likelihood

To understand why there is no closed form solution for maximizing the log-
likelihood, we first differentiate LL(w) with respect to w. We make use of
the useful result for sigmoid:

dθi
dw

= θi(1− θi)xi

Using this result we obtain:

d

dw
LL(w) =

N∑

i=1

yi
θi
θi(1− θi)xi −

(1− yi)
1− θi

θi(1− θi)xi

=
N∑

i=1

(yi(1− θi)− (1− yi)θi)xi

=
N∑

i=1

(yi − θi)xi

Obviously, given that θi is a non-linear function of w, a closed form solution
is not possible.
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6.1 Using Gradient Descent for Learning Weights

• Compute gradient of LL with respect to w

• A convex function of w with a unique global maximum

d

dw
LL(w) =

N∑

i=1

(yi − θi)xi

• Update rule:

wk+1 = wk + η
d

dwk

LL(wk)
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6.2 Using Newton’s Method

• Setting η is sometimes tricky

• Too large – incorrect results

• Too small – slow convergence

• Another way to speed up convergence:

Newton’s Method

wk+1 = wk + ηH−1k
d

dwk

LL(wk)

• Hessian or H is the second order derivative of the objective function

• Newton’s method belong to the family of second order optimization
algorithms

• For logistic regression, the Hessian is:

H = −
∑

i

θi(1− θi)xix>i
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6.3 Regularization with Logistic Regression

• Overfitting is an issue, especially with large number of features

• Add a Gaussian prior ∼ N (0, τ 2)

• Easy to incorporate in the gradient descent based approach

LL′(w) = LL(w)− 1

2
λw>w

d

dw
LL′(w) =

d

dw
LL(w)− λw

H ′ = H − λI
where I is the identity matrix.

6.4 Handling Multiple Classes

• p(y|x) ∼Multinoulli(θ)

• Multinoulli parameter vector θ is defined as:

θj =
exp(w>j x)

∑C
k=1 exp(w

>
k x)

• Multiclass logistic regression has C weight vectors to learn

6.5 Bayesian Logistic Regression

• How to get the posterior for w?

• Not easy - Why?

Laplace Approximation

• We do not know what the true posterior distribution for w is.

• Is there a close-enough (approximate) Gaussian distribution?

One should note that we used a Gaussian prior for w which is not a conjugate
prior for the Bernoulli distribution used in the logistic regression. In fact
there is no convenient prior that may be used for logistic regression.
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