
Introduction to Machine Learning
Neural Networks

Varun Chandola

March 24, 2021

Outline

Contents

1 Extending Linear Models 1

2 Multi Layered Perceptrons 2
2.1 Generalizing to Multiple Labels 2
2.2 Properties of Sigmoid Function 3

3 Feed Forward Neural Networks 3

4 Backpropagation 4
4.1 Derivation of the Backpropagation Rules 6

5 Final Algorithm 9

6 Wrapping up Neural Networks 10

7 Bias Variance Tradeoff 10

1 Extending Linear Models

• Questions?

– How to learn non-linear surfaces?

x1

x2

x3

x4

x5

Output

Input
layer

Output
layer

x1

x2

x3

x4

x0 = 1
1

o1

o2

o3

o4

Hidden
layer

Inputs
Output

layer

– How to generalize to multiple outputs, numeric output?

2 Multi Layered Perceptrons

2.1 Generalizing to Multiple Labels

• Distinguishing between multiple categories

• Solution: Add another layer - Multi Layer Neural Networks

Multi-class classification is more applicable than binary classification.
Applications include, handwritten digit recognition, robotics, etc.

2

• Linear Unit

• Perceptron Unit

• Sigmoid Unit

– Smooth, differentiable activation function

σ(net) =
1

1 + e−net

– Non-linear output

x0

x1

x2

x3

x4

Output

net = w>x o = σ(net)

As mentioned ear-
lier, the perceptron unit cannot be used as it is not differentiable. The linear
unit is differentiable but only learns linear discriminating surfaces. So to
learn non-linear surfaces, we need to use a non-linear unit such as the sig-
moid.

2.2 Properties of Sigmoid Function

−1

0

1

x

f
h
(x

)

−1

0

1

x

f
t
(x

)

0

1

x

f
s
(x

)

The threshold output in the case of the sigmoid unit is continuous and
smooth, as opposed to a perceptron unit or a linear unit. A useful property
of sigmoid is that its derivative can be easily expressed as:

Dσ(y)

Dy
= σ(y)(1− σ(y))

3

x1

x2

x3

x4

x0 = 1
1

o1

o2

o3

o4

Hidden
layer

Inputs
Output

layer

One can also use e−ky instead of e−y, where k controls the “steepness” of the
threshold curve.

3 Feed Forward Neural Networks

• D input nodes (excluding bias)

• M hidden nodes (excluding bias)

• K output nodes

• At hidden nodes: wj, 1 ≤ j ≤M , wj ∈ RD+1

• At output nodes: wl, 1 ≤ l ≤ K, wl ∈ RM+1

The multi-layer neural network shown above is used in a feed forward mode,
i.e., information only flows in one direction (forward). Each hidden node
“collects” the inputs from all input nodes and computes a weighted sum
of the inputs and then applies the sigmoid function to the weighted sum.
The output of each hidden node is forwarded to every output node. The
output node “collects” the inputs (from hidden layer nodes) and computes a
weighted sum of its inputs and then applies the sigmoid function to obtain
the final output. The class corresponding to the output node with the largest
output value is assigned as the predicted class for the input.

For implementation, one can even represent the weights as two matrices,
W (1) (M ×D + 1) and W (2) (K ×M + 1).

4

4 Backpropagation

• Assume that the network structure is predetermined (number of hidden
nodes and interconnections)

• Objective function for N training examples:

J =
N∑

i=1

Ji =
1

2

N∑

i=1

K∑

l=1

(yil − oil)2

– There can be other objective (or loss) functions (e.g., logistic-loss
from PA2)

• yil - Target value associated with lth class for input (xi)

• yil = 1 when k is true class for xi, and 0 otherwise

• oil - Predicted output value at lth output node for xi

What are we learning?
Weight vectors for all output and hidden nodes that minimize J

The first question that comes to mind is, why not use a standard gradient
descent based minimization as the one that we saw in single perceptron unit
learning. The reason is that the output at every output node (ol) is directly
dependent on the weights associated with the output nodes but not with
weights at hidden nodes. But the input values are “used” by the hidden
nodes and are not “visible” to the output nodes. To learn all the weights
simultaneously, direct minimization is not possible. Advanced methods such
as Backpropagation need to be employed.

1. Initialize all weights to small values

2. For each training example, 〈x,y〉:

(a) Propagate input forward through the network

(b) Propagate errors backward through the network

Gradient Descent

5

• Move in the opposite direction of the gradient of the objective function

• −η∇J

∇J =
N∑

i=1

∇Ji

• What is the gradient computed with respect to?

– Weight vectors - M at hidden nodes and K at output nodes

– wj (j = 1 . . .M)

– wl (l = 1 . . . K)

• wj ← wj − η ∂J
∂wj

= wj − η
∑N

i=1
∂Ji
∂wj

• wl ← wl − η ∂J
∂wl

= wl − η
∑N

i=1
∂J
∂wl

∇Ji =

∂Ji
∂w1
∂Ji
∂w2
...

∂Ji
∂wm+k

∂Ji
∂wr

=

∂Ji
∂wr1
∂Ji
∂wr2

...

• Need to compute ∂Ji
∂wrq

• Update rule for the qth entry in the rth weight vector:

wrq ← wrq − η
∂J

∂wrq

= wrq − η
N∑

i=1

∂Ji
∂wrq

6

4.1 Derivation of the Backpropagation Rules

Assume that we only one training example, i.e., i = 1, J = Ji. Dropping the
subscript i from here onwards.

• Consider any weight wrq

• Let urq be the qth element of the input vector coming in to the rth unit.

Observation 1
Weight wrq is connected to J through netr =

∑
q wrqurq.

∂J

∂wrq

=
∂J

∂netr

∂netr
∂wrq

=
∂J

∂netr
urq

Observation 2
netl for an output node is connected to J only through the output value of
the node (or ol)

∂J

∂netl
=
∂J

∂ol

∂ol
∂netl

The first term above can be computed as:

∂J

∂ol
=

∂

∂ol

1

2

K∑

l=1

(yl − ol)2

The entries in the summation in the right hand side will be non zero only for
l. This results in:

∂J

∂ol
=

∂

∂ol

1

2
(yl − ol)2

= −(yl − ol)

Moreover, the second term in the chain rule above can be computed as:

∂ol
∂netl

=
∂σ(netl)

∂netl
= ol(1− ol)

7

The last result arises from the fact ol is a sigmoid function. Using the above
results, one can compute the following.

∂J

∂netl
= −(yl − ol)ol(1− ol)

Let
δl = (yl − ol)ol(1− ol)

Therefore,
∂J

∂netl
= −δl

Finally we can compute the partial derivative of the error with respect to the
weight wlj as:

∂J

∂wlj

= −δlulj

Update Rule for Output Units

wlj ← wlj + ηδlulj

where δl = (yl − ol)ol(1− ol).

• Question: What is ulj for the lth output node?

• ulj is the jth input to lth output node, which will be the output coming
from the jth hidden node.

Observation 3
netj for a hidden node is connected to J through all output nodes

∂J

∂netj
=

K∑

l=1

∂J

∂netl

∂netl
∂netj

Remember that we have already computed the first term on the right hand
side for output nodes:

∂J

∂netl
= −δl

8

where δl = (yl − ol)ol(1− ol). This result gives us:

∂J

∂netj
=

K∑

l=1

−δl
∂netl
∂netj

=
K∑

l=1

−δl
∂netl
∂zj

∂zj
∂netj

=
K∑

l=1

−δlwlj
∂zj
∂netj

=
K∑

l=1

−δlwljzj(1− zj)

= −zj(1− zj)
K∑

l=1

δlwlj

Thus, the gradient becomes:

∂J

∂wjp

=
∂J

∂netj
ujp

= −zj(1− zj)(
K∑

l=1

δlwlj)ujp

= −δjujp

Update Rule for Hidden Units
wjp ← wjp + ηδjujp

δj = zj(1− zj)
K∑

l=1

δlwlj

δl = (yl − ol)ol(1− ol)

• Question: What is ujp for the jth hidden node?

• ujp is the pth input to jth hidden node, which will be pth attribute value
for the input, i.e., xp.

9

5 Final Algorithm

• While not converged:

– Move forward to compute outputs at hidden and output nodes

– Move backward to propagate errors back

∗ Compute δ errors at output nodes (δl)

∗ Compute δ errors at hidden nodes (δj)

– Update all weights according to weight update equations

6 Wrapping up Neural Networks

• Error function contains many local minima

• No guarantee of convergence

– Not a “big” issue in practical deployments

• Improving backpropagation

– Adding momentum

– Using stochastic gradient descent

– Train multiple times using different initializations

Adding momentum to the learning process refers to adding an “inertia” term
which tries to keep the current value of a weight value similar to the one taken
in the previous round.

7 Bias Variance Tradeoff

• Neural networks are universal function approximators

– By making the model more complex (increasing number of hidden
layers or m) one can lower the error

• Is the model with least training error the best model?

– The simple answer is no!

10

– Risk of overfitting (chasing the data)

– Overfitting ⇐ High generalization error

High Variance - Low Bias

• “Chases the data”

• Model parameters change significantly when the training data is changed,
hence the term high variance.

• Very low training error

• Poor performance on unseen data

Low Variance - High Bias

• Less sensitive to training data

• Higher training error

• Better performance on unseen data

• General rule of thumb – If two models are giving similar training error,
choose the simpler model

• What is simple for a neural network?

• Low weights in the weight matrices?

– Why?

– The simple answer to this is that if the weights in the weight
vectors at each node are high, the resulting discriminating sur-
face learnt by the neural network will be highly non-linear. If
the weights are smaller, the surface will be smoother (and hence
simpler).

• Penalize solutions in which the weights are high

• Can be done by introducing a penalty term in the objective function

11

– Regularization

Regularization for Backpropagation

J̃ = J +
λ

2n

(
M∑

j=1

D+1∑

p=1

(w
(1)
jp)2 +

K∑

l=1

M+1∑

j=1

(w
(2)
lj)2

)

Other Extensions?

• Use a different loss function (why)?

– Quadratic (Squared), Cross-entropy, Exponential, KL Divergence,
etc.

• Use a different activation function (why)?

– Sigmoid

f(z) =
1

1 + exp(−z)

– Tanh

f(z) =
ez − e−z

ez + e−z

– Rectified Linear Unit (ReLU)

f(z) = max(0, z)

References

12

