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Issues with Linear Regression

1. Susceptible to outliers

2. Too simplistic - Underfitting

3. No way to control overfitting

4. Unstable in presence of correlated input attributes

5. Gets “confused” by unnecessary attributes
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Biggest Issue with Linear Models

I They are linear!!

I Real-world is usually non-linear

I How do learn non-linear fits or non-linear decision boundaries?
I Basis function expansion
I Kernel methods (will discuss this later)
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Handling Non-linear Relationships

I Replace x with non-linear functions φ(x)

y = w>φ(x)

I Model is still linear in w

I Also known as basis function expansion

Example

φ(x) = [1, x , x2, . . . , xp]

I Increasing p results in more complex fits

Chandola@UB CSE 474/574 5 / 14



The Principle of Occam’s Razor

I Always choose the simpler explanation

I Keep things simple

I Pluralitas non est ponenda sine neccesitate

I A general problem-solving philosophy
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How to Control Overfitting?

I Use simpler models (linear instead of polynomial)
I Might have poor results (underfitting)

I Use regularized complex models

Θ̂ = arg min
Θ

J(Θ) + λR(Θ)

I R() corresponds to the penalty paid for complexity of the model
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l2 Regularization

Ridge Regression

ŵ = arg min
w

J(w) +
1

2
λ‖w‖2

2

I Helps in reducing impact of correlated inputs

I ‖w‖2
2 is the square of the l2 norm of the vector w:

‖w‖2
2 =

D∑
i=1

w2
i
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Parameter Estimation for Ridge Regression

Exact Loss Function

J(w) =
1

2

N∑
i=1

(yi −w>xi )
2 +

1

2
λ||w||22

=
1

2
(y − Xw)>(y − Xw) +

1

2
λ||w||22

Ridge Estimate of w

ŵRidge = (X>X + λID)−1X>y

I ID is a (D × D) identity matrix.
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Using Gradient Descent with Ridge Regression

I Very similar to OLE

I Minimize the squared loss using Gradient Descent

J(w) =
1

2
(y − Xw)>(y − Xw) +

1

2
λ||w||22

∇J(w) =
d

dw
J(w) =

1

2

d

dw
(y − Xw)>(y − Xw) +

1

2
λ

d

dw
‖w‖2

2

= X>Xw − X>y + λw

Using the above result, one can perform repeated updates of the weights:

w := w − η∇J(w)
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l1 Regularization

Least Absolute Shrinkage and Selection Operator - LASSO

ŵ = arg min
w

J(w) + λ|w|

I Helps in feature selection – favors sparse solutions

I Optimization is not as straightforward as in Ridge regression
I Gradient not defined for wi = 0, ∀i
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LASSO vs. Ridge

I Both control overfitting

I Ridge helps reduce impact of correlated inputs, LASSO helps in
feature selection

I Rule of thumb
I If data has many features but only few are potentially useful, use

LASSO
I If data has potentially many correlated features, use Ridge

Elastic Net Regularization

ŵ = arg min
w

J(w) + λ1|w|+ λ2‖w‖2
2

I The best of both worlds

I Again, optimizing for w is not straightforward
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Impact of outliers on regression

I Linear regression training gets impacted by the presence of outliers

I The square term in loss function is the culprit

I How to handle this (Robust Regression)?
I Least absolute deviations instead of least squares

J(w) =
N∑
i=1

|yi − w>x|
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