
Introduction to Machine Learning
Linear Regression

Varun Chandola

March 8, 2021

Outline

Contents

1 Basics 1

2 Linear Regression 2
2.1 Problem Formulation . 2
2.2 Learning Parameters . 4
2.3 Machine Learning as Optimization 5
2.4 Convex Optimization . 6
2.5 Matrix Calculus Basics . 7
2.6 Evaluating Models . 7
2.7 Gradient Descent . 7
2.8 Issues with Gradient Descent 10
2.9 Stochastic Gradient Descent 11

1 Basics

Basics

• Data - scalar (x), vector (x), Matrix (X)

Scalars

• Numeric (x ∈ R)

• Categorical (e.g., x ∈ {0, 1})

• Constants will be denoted as D, M , etc.

Vector

• Length of a vector x ∈ RD

• Vector dot product (x · y)

• Norm of a vector (|x|, ‖x‖,‖x‖p)

Matrix

• Size of a matrix (X ∈ RM×N)

• Transpose of a matrix (X>)

• Matrix product (XY))

• A vector is a special matrix with only one column

x · y ≡ x>y

2 Linear Regression

2.1 Problem Formulation

• There is one scalar target variable y

• There is one vector input variable x

• Inductive bias:
y = w>x

2

Linear Regression Learning Task
Learn w given training examples, 〈X,y〉.
The training data is denoted as 〈X,y〉, where X is a N×D data matrix con-
sisting of N data examples such that each data example is a D dimensional
vector. y is a N × 1 vector consisting of corresponding target values for the
examples in X.

• Fitting a straight line to d dimensional data

y = w>x

y = w>x = w1x1 + w2x2 + . . .+ wdxd

• Will pass through origin

• Add intercept

y = w0 + w1x1 + w2x2 + . . .+ wdxd

• Equivalent to adding another column in X of 1s.

Incorporating Bias/Intercept

Explicit Bias

x ≡ {x1, x2, . . . , xd}
w ≡ {w1, w2, . . . , wd}
y = w0 + w>x

Implicit Bias

x ≡ {1, x1, x2, . . . , xd}
w ≡ {w0, w1, w2, . . . , wd}
y = w>x

3

2.2 Learning Parameters

• Minimize squared loss

J(w) =
1

2

N∑

i=1

(yi −w>xi)
2

• or,

J(w) =
1

2
(y −Xw)>(y −Xw)

• Make prediction (w>xi) as close to the target (yi) as possible

• Least squares estimate

ŵ = (X>X)−1X>y

• We will derive this expression in class.

The derivation of the least squares estimate can be done by first converting
the expression of the squared loss into matrix notation, i.e.,

J(w) =
1

2

N∑

i=1

(yi −w>xi)
2

=
1

2
(y −Xw)>(y −Xw)

To minimize the error, we first compute its derivative with respect to w:

∂LL(w)

∂w
=

1

2

∂

∂w
(y −Xw)>(y −Xw)

Note that, we use the fact that (Xw)>y = y>Xw, since both quantities are
scalars and the transpose of a scalar is equal to itself. Continuing with the
derivative:

∂LL(w)

∂w
=

1

2
(2w>X>X− 2y>X)

Setting the derivative to 0, we get:

2w>X>X− 2y>X = 0

w>X>X = y>X

(X>X)>w = X>y (Taking transpose both sides)

(X>X)w = X>y

w = (X>X)−1X>y

4

2.3 Machine Learning as Optimization

At this point, we move away from the situation where a perfect solution
exists, and the learning task it to reach the perfect solution. Instead, we
focus on finding the best possible solution which optimizes certain criterion.

• Learning is optimization

• Faster optimization methods for faster learning

• Let w ∈ Rd and S ⊂ Rd and f0(w), f1(w), . . . , fm(w) be real-valued
functions.

• Standard optimization formulation is:

minimize
w

f0(w)

subject to fi(w) ≤ 0, i = 1, . . . ,m.

• Methods for general optimization problems

– Simulated annealing, genetic algorithms

• Exploiting structure in the optimization problem

– Convexity, Lipschitz continuity, smoothness

Convex Sets

Convex Functions

1Adapted from http://ttic.uchicago.edu/~gregory/courses/ml2012/lectures/

tutorial_optimization.pdf. Also see, http://www.stanford.edu/~boyd/cvxbook/

and http://scipy-lectures.github.io/advanced/mathematical_optimization/.

5

y = x2

w1

w2

Convexity is a property of certain functions which can be exploited by
optimization algorithms. The idea of convexity can be understood by first
considering convex sets. A convex set is a set of points in a coordinate space
such that every point on the line segment joining any two points in the set
are also within the set. Mathematically, this can be written as:

w1,w2 ∈ S ⇒ λw1 + (1− λ)w2 ∈ S
where λ ∈ [0, 1]. A convex function is defined as follows:

• f : Rd → R is a convex function if the domain of f is a convex set and
for all λ ∈ [0, 1]:

f(λw1 + (1− λ)w2) ≤ λf(w1) + (1− λ)f(w2)

Some examples of convex functions are:

• Affine functions: w>x + b

• ‖w‖p for p ≥ 1

• Logistic loss: log(1 + e−yw
>x)

2.4 Convex Optimization

• Optimality Criterion

minimize
w

f0(w)

subject to fi(w) ≤ 0, i = 1, . . . ,m.

where all fi(w) are convex functions.

6

• w0 is feasible if w0 ∈ Dom f0 and all constraints are satisfied

• A feasible w∗ is optimal if f0(w
∗) ≤ f0(w) for all w satisfying the

constraints

2.5 Matrix Calculus Basics

∂a>b

∂a
=
∂b>a

∂a
= b

∂a>Ma

∂a
= 2Ma

where M is a symmetric matrix.

2.6 Evaluating Models

Evaluating Linear Regression Model

• How do we know that a model is good?

• What is a good evaluation/performance metric?

Root Mean Squared Error

RMSE =

√√√√
N∑

i=1

(yi − ŷi)2

where ŷi is the prediction for the ith instance.

• What data to evaluate this on?

– Training data?

– Test data (generalization error)

2.7 Gradient Descent

• Denotes the direction of steepest ascent

7

∇J(w) =

∂J
∂w0
∂J
∂w1
...
∂J
∂wd

-1

0

1

2

-2
-1

0
1

2
3

0

5

10

15

20

25

w0 w1

E
[w

]

A small step in the weight space from w to w + δw changes the objective
(or error) function. This change is maximum if δw is along the direction of
the gradient at w and is given by:

δJ ' δw>∇J(w)

Since J(w) is a smooth continuous function of w, the extreme values of J
will occur at the location in the input space (w) where the gradient of the
error function vanishes, such that:

∇J(w) = 0

The vanishing points can be further analyzed to identify them as saddle,
minima, or maxima points.

One can also derive the local approximations done by first order and
second order methods using the Taylor expansion of J(w) around some point

8

w′ in the weight space.

J(w′) ' J(w) + (w′ −w)>∇+
1

2
(w′ −w)>H(w′ −w)

For first order optimization methods, we ignore the second order derivative
(denoted by H or the Hessian). It is easy to see that for w to be the local
minimum, J(w)− J(w′) ≤ 0, ∀w′ in the vicinity of w. Since we can choose
any arbitrary w′, it means that every component of the gradient ∇ must be
zero.

1. Set derivative to 0
∇J(w) = 0

2. Check second derivative for minima or maxima or saddle point

1. Start from any point in variable space

2. Move along the direction of the steepest descent (or ascent)

• By how much?

• A learning rate (η)

• What is the direction of steepest descent?

– Gradient of J at w

Gradient descent is a first-order optimization method for convex optimization
problems. It is analogous to “hill-climbing” where the gradient indicates the
direction of steepest ascent in the local sense.

Training Rule for Gradient Descent
w = w − η∇J(w)

For each weight component:

wj = wj − η
∂J

∂wj

The key operation in the above update step is the calculation of each
partial derivative. This can be computed for perceptron error function as

9

follows:

∂J

∂wj

=
∂

∂wj

1

2

∑

i

(yi −w>xi)
2

=
1

2

∑

i

∂

∂wj

(yi −w>xi)
2

=
1

2

∑

i

2(yi −w>xi)
∂

∂wj

(yi −w>xi)

=
∑

i

(yi −w>xi)(−xij)

where xij denotes the jth attribute value for the ith training example. The
final weight update rule becomes:

wj = wj + η
∑

i

(yi −w>xi)xij

• Error surface contains only one global minimum

• Algorithm will converge

– Examples need not be linearly separable

• η should be small enough

• Impact of too large η?

• Too small η?

If the learning rate is set very large, the algorithm runs the risk of overshoot-
ing the target minima. For very small values, the algorithm will converge
very slowly. Often, η is set to a moderately high value and reduced after
each iteration.

2.8 Issues with Gradient Descent

• Slow convergence

• Stuck in local minima

10

One should note that the second issue will not arise in the case of Perceptron
training as the error surface has only one global minima. But for general
setting, including multi-layer perceptrons, this is a typical issue.

More efficient algorithms exist for batch optimization, including Conju-
gate Gradient Descent and other quasi-Newton methods. Another approach
is to consider training examples in an online or incremental fashion, resulting
in an online algorithm called Stochastic Gradient Descent [1], which will
be discussed next.

2.9 Stochastic Gradient Descent

• Update weights after every training example.

• For sufficiently small η, closely approximates Gradient Descent.

Gradient Descent Stochastic Gradient De-
scent

Weights updated after sum-
ming error over all examples

Weights updated after ex-
amining each example

More computations per
weight update step

Significantly lesser computa-
tions

Risk of local minima Avoids local minima

• Minimize the squared loss using Gradient Descent

J(w) =
1

2

N∑

i=1

(yi −w>xi)
2

• Why?

The analytical approach discussed earlier involves a matrix inversion ((X>X)−1)
which is a (D + 1) × (D + 1) matrix. Alternatively, one could solve a sys-
tem of equations. When D is large, this inversion can be computationally
expensive (O ∗D3) for standard matrix inversion. Moreover, often, the lin-
ear system might have singularities and inversion or solving the system of
equations might yield numerically unstable results.

11

To compute the gradient update rule one can differentiate the error with
respect to each entry of w.

∂J(w)

∂wj

=
1

2

∂

∂wj

N∑

i=1

(yi −w>xi)
2

=
N∑

i=1

(w>xi − yi)xij

Using the above result, one can perform repeated updates of the weights:

wj := wj − η
∂J(w)

∂wj

References

References

[1] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hub-
bard, and L. D. Jackel. Backpropagation applied to handwritten zip code
recognition. Neural Comput., 1(4):541–551, Dec. 1989.

12

