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Generative Models

> Let X represents the data with multiple discrete attributes
» Y represent the class

Most probable class

P(Y=c|X=x,0) x P(X=x|Y =¢,0)P(Y =c,80)

> P(X=x|Y =c,0)=p(xly =c,0)
» p(x|y = ¢, 0) - class conditional density
» How is the data distributed for each class?
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Concept Learning in Number Line

> | give you a set of numbers (training
set D) belonging to a concept

» Choose the most likely hypothesis
(concept)

» Assume that numbers are between 1
and 100
» Hypothesis Space (H):
> All powers of 2
All powers of 4
All even numbers
All prime numbers

Numbers close to a fixed number
(say 12)

vvyy
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Hypothesis Space (H)
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Even numbers
Odd numbers
Squares
Powers of 2

Powers of 4
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Hypothesis Space (H)
6. Powers of 16
7. Multiples of 5
8. Multiples of 10
9. Numbers within 20 +£5
10. All numbers between 1 and 100
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Hypothesis Space (H)
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Hypothesis Space (H)
1. Even numbers
Odd numbers
Squares
Powers of 2
Powers of 4
Powers of 16
Multiples of 5
Multiples of 10
Numbers within 20 45

All numbers between 1 .
and 100 )

> D = {20,30,40,50}
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Hypothesis Space ()
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Hypothesis Space ()
1. Even numbers
Odd numbers
Squares
Powers of 2
Powers of 4
Powers of 16
Multiples of 5
Multiples of 10
Numbers within 20 45

All numbers between 1
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> D ={1,4,16,64}
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Computing Likelihood

» Why choose powers of 4 concept over even numbers concept for
D ={1,4,16,64}7

» Avoid suspicious coincidences
» Choose concept with higher likelihood

» What is the likelihood of above D to be generated using the powers
of 4 concept?

» Likelihood for even numbers concept?
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Likelihood

» Why choose one hypothesis over other?
» Avoid suspicious coincidences
» Choose concept with higher likelihood

p(DIh) = T p(xIh)
xeD

» Log Likelihood

log p(D|h) = Zlogp x|h)
xeD
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Bayesian Concept Learning

it s D = {1,4,16,64}

Squares
10 Posterior Distribution, D = {16,4,64,32}

Powers of 2
Powers of 4
Powers of 16
Multiples of 5 o
Multiples of 10

Numbers within 20 + 5 o

All numbers between 1 g
and 100
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Adding a Prior

» Inside information about the hypotheses
» Some hypotheses are more likely apriori
> May not be the right hypothesis (prior can be wrong)

1o Prior Distribution, D = {}
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Posterior

> Revised estimates for h after observing evidence (D) and the prior

» Posterior o Likelihood x Prior

p(D|h)p(h)
PID) = s p(DIW)o(H)

h Prior | Likelihood Posterior
1 | Even 0.300 | 1.600e-07 1.403e-04
2 | Odd 0.075 | 0.000e+00 | 0.000e+00
3 | Squares 0.075 | 1.000e-04 | 2.192e-02
4 | Powers of 2 0.100 | 4.165e-04 1.217e-01
5 | Powers of 4 0.075 | 3.906e-03 | 8.562e-01
6 | Powers of 16 0.075 | 0.000e+00 | 0.000e+00
7 | Multiples of 5 0.075 | 0.000e+00 | 0.000e+00
8 | Multiples of 10 0.075 | 0.000e+00 | 0.000e+00
9 | Numbers within 20 &5 | 0.075 | 0.000e-++00 | 0.000e+00
10 | All Numbers 0.075 | 1.000e-08 | 2.192e-06
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Finding the Best Hypothesis

Maximum A Priori Estimate

~

hprior = arg ;,nax p(h)

Maximum Likelihood Estimate (MLE)

hmee = argmaxp(D|h) = arg maxlog p(D|h)
h h

= argmax Z log p(x|H)
h xeD

Maximum a Posteriori (MAP) Estimate

huap = arg max p(D|h)p(h) = arg max(log p(D|h) + log p(h))
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MAP and MLE

> ?7,,,,-0, - Most likely hypothesis based on prior
» huie - Most likely hypothesis based on evidence
> hmap - Most likely hypothesis based on posterior

~

hprior = arg max log p(h)
h

hmie = arg maxlog p(D|h)
h

huap = arg max(log p(D1h) + log p(h))
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Interesting Properties

» As data increases, MAP estimate converges towards MLE
> Why?

» MAP/MLE are consistent estimators
> If concept is in H, MAP/ML estimates will converge

> If ¢ ¢ H, MAP/ML estimates converge to h which is closest possible
to the truth
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From Prior to Posterior via Likelihood

Prior Posterior

Prior Distribution, D = {} R Posterior Distribution, D = {16,4,64,32)
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» Objective: To revise the prior distribution over the hypotheses after
observing data (evidence).
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Posterior Predictive Distribution

» New input, x*
» What is the probability that x* is also generated by the same
concept as D?
> P(Y =c|X =x",D)?
» Option 0: Treat hP"™" as the true concept

P(Y = c|X = x*,D) = P(X = x*|c = hP"™")
» Option 1: Treat hMLE as the true concept

P(Y = c|X = x*,D) = P(X = x*|c = hMLE)
» Option 2: Treat hMAP as the true concept

P(Y = c|X = x*,D) = P(X = x*|c = hMAP)
» Option 3: Bayesian Averaging

P(Y =c|X =x*,D) =Y P(X = x"|c = h)p(h|D)
h
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Steps for Learning a Generative Model

» Example: D is a sequence of N binary values (0s and 1s) (coin
tosses)
» What is the best distribution that could describe D7

» What is the probability of observing a head in future?

Step 1: Choose the form of the model

» Hypothesis Space - All possible distributions
» Too complicated!!
» Revised hypothesis space - All Bernoulli distributions
(X ~ Ber(9),0<6<1)
» 0 is the hypothesis
> Still infinite (0 can take infinite possible values)
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Compute Likelihood

» Likelihood of D
p(DI6) = 0" (1.~ 0)"

Maximum Likelihood Estimate

Owme = argmax p(D|0) = arg maxHNl(l _ g)No
0 )

Ny
No + Ny
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Compute Likelihood

» Likelihood of D
p(DI6) = 0" (1.~ 0)"

Maximum Likelihood Estimate

Owme = argmax p(D|0) = arg maxHNl(l _ g)No
0 )

Ny
No + Ny

» We can stop here (MLE approach)
» Probability of getting a head next:

p(X* = 1|D) = éMLE
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Incorporating Prior

1.2
11
» Prior encodes our prior belief on 1
0
. . 0.9
» How to set a Bayesian prior?
1. A point estimate: Oprior = 0.5
2. A probability distribution 02 04 0608
over 6 (a random variable) Nelo)
> Which one? 3 /s" |

» For a bernoulli
distribution 0 < 6 <1
P> Beta Distribution
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Beta Distribution as Prior

» Continuous random variables defined between 0 and 1
1
B(a, b)

Beta(f|a, b) £ p(6]a, b) = 62711 —9)>t

» a2 and b are the (hyper-)parameters for the distribution
> B(a,b) is the beta function

_ M(a)r(b)
B(a, b) = Ta+b)

oo
rx) = / e Ydu
0
If x is integer
Mx)=(x—1)!
» “Control" the shape of the pdf
» We can stop here as well (prior approach)
p(X* = 1) = ‘gprior
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Conjugate Priors

» Another reason to choose Beta distribution
p(DIO) = 0" (1~ 0)"
p(#) o 271(1 — 9)>?
» Posterior o Likelihood x Prior

p(0|D) o M (1 —0)Mopa1(1 — )P

o 9N1+a—1(1 _ 9)N0+b—1

» Posterior has same form as the prior

» Beta distribution is a conjugate prior for Bernoulli/Binomial
distribution
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Estimating Posterior

» Posterior

p(0|D) oc GMFITL(L — g)Netbt
= Beta(9|N1 +a, Np + b)

» We start with a belief that

a

BP=35%

» After observing N trials in which we observe N; heads and N trails,
we update our belief as:

a+ Ny

EOIDI= h 5N
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Using Posterior

» We know that posterior over @ is a beta distribution
> MAP estimate
éMAP = arg maxp(0|a + Nl, b+ N())
0

a+ N —1
at+b+N-2
What happens if a=b=17
» We can stop here as well (MAP approach)

v

\4

Probability of getting a head next:

p(X* = 1|D) = éMAp
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True Bayesian Approach

» All values of 6 are possible

> Prediction on an unknown input (x*) is given by Bayesian Averaging

Pl =11D) = [ plx = 16)p(8ID)p

1
/ 98eta(0|a + Ny, b+ No)
0

E[6|D]
a+ M
at+b+ N

» This is same as using E[0|D] as a point estimate for 6
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The Black Swan Paradox

Why use a prior?
Consider D = tails, tails, tails
Ny =0,N=3
Ome =0
p(x* =1|D) = 0!l
> Never observe a heads
» The black swan paradox

vvyyyVvYyy

» How does the Bayesian approach help?
a
*=1|D) = ———
p(X | ) a+b+3
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Why is MAP Estimate Insufficient?

» MAP is only one part of the posterior
» @ at which the posterior probability is maximum
> But is that enough?
» What about the posterior variance of 67

(a+ Ni)(b+ No)

varlf|D] = (a+b+N)?(a+b+ N+1)

P |If variance is high then Opap is not trustworthy
> Bayesian averaging helps in this case
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Multivariate Gaussian

» pdf for MVN with d dimensions:

1 1 _
N(x|p, X) £ g2 %P 5= p) EH(x — p)
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Estimating Parameters of MVN

Problem Statement

Given a set of N independent and identically distributed (iid)
samples, D, learn the parameters (u, X) of a Gaussian distribution that
generated D.

» MLE approach - maximize log-likelihood
P> Result
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Estimating Posterior

» We need posterior for both p and X

p(p)

p(X)
» What distribution do we need to sample u?
» A Gaussian distribution!

p(p) = N (p|mo, Vo)

» What distribution do we need to sample X?
» An Inverse-Wishart distribution.

E) = IW(ZIS,»)
_ 1 c—@tbiy2 1 Cle-1
= Z. x| exp (=5 tr(ST X )

where,
Ziw = |S|7V/22"P2r b (v /2)
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Calculating Posterior

Posterior for pu - Also a MVN

p([.L|D,Z) = N(vavN)
Vil = Vol4+nx!
my = Vy(ZY(Nx)+Vyimg)

Posterior for X - Also an Inverse Wishart

p(Z[D, p) IW(Sw, vn)
vy =19+ N

Sy

So-i-sﬂ
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